首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes) and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.  相似文献   

2.
Coupling between neural oscillations in different frequency bands has been proposed to coordinate neural processing. In particular, gamma power coupled to alpha phase is proposed to reflect gating of information in the visual system but the existence of such a mechanism remains untested. Here, we recorded ongoing brain activity using magnetoencephalography in subjects who performed a modified Sternberg working memory task in which distractors were presented in the retention interval. During the anticipatory pre-distractor period, we show that the phase of alpha oscillations was coupled with the power of high (80-120Hz) gamma band activity, i.e. gamma power consistently was lower at the trough than at the peak of the alpha cycle (9-12Hz). We further show that high alpha power was associated with weaker gamma power at the trough of the alpha cycle. This result is in line with alpha activity in sensory region implementing a mechanism of pulsed inhibition silencing neuronal firing every ~100 ms.  相似文献   

3.
Voluntary movement is accompanied by changes in the degree to which neurons in the brain synchronize their activity within discrete frequency ranges. Two patterns of movement-related oscillatory activity stand out in human cortical motor areas. Activity in the beta frequency (15-30 Hz) band is prominent during tonic contractions but is attenuated prior to and during voluntary movement. Without such attenuation, movement may be slowed, leading to the suggestion that beta activity promotes postural and tonic contraction, possibly at a cost to the generation of new movements. In contrast, activity in the gamma (60-90 Hz) band increases during movement. The direction of change suggests that gamma activity might facilitate motor processing. In correspondence with this, increased frontal gamma activity is related with reduced reaction times. Yet the possibility remains that these functional correlations reflect an epiphenomenal rather than causal relationship. Here we provide strong evidence that oscillatory activities at the cortical level are mechanistically involved in determining motor behavior and can even improve performance. By driving cortical oscillations using noninvasive electrical stimulation, we show opposing effects at beta and gamma frequencies and interactions with motor task that reveal the potential quantitative importance of oscillations in motor behavior.  相似文献   

4.
Ray S  Maunsell JH 《PLoS biology》2011,9(4):e1000610
During cognitive tasks electrical activity in the brain shows changes in power in specific frequency ranges, such as the alpha (8-12 Hz) or gamma (30-80 Hz) bands, as well as in a broad range above ~80 Hz, called the high-gamma band. The role or significance of this broadband high-gamma activity is unclear. One hypothesis states that high-gamma oscillations serve just like gamma oscillations, operating at a higher frequency and consequently at a faster timescale. Another hypothesis states that high-gamma power is related to spiking activity. Because gamma power and spiking activity tend to co-vary during most stimulus manipulations (such as contrast modulations) or cognitive tasks (such as attentional modulation), it is difficult to dissociate these two hypotheses. We studied the relationship between high-gamma power, gamma rhythm, and spiking activity in the primary visual cortex (V1) of awake monkeys while varying the stimulus size, which increased the gamma power but decreased the firing rate, permitting a dissociation. We found that gamma power became anti-correlated with the high-gamma power, suggesting that the two phenomena are distinct and have different origins. On the other hand, high-gamma power remained tightly correlated with spiking activity under a wide range of stimulus manipulations. We studied this relationship using a signal processing technique called Matching Pursuit and found that action potentials are associated with sharp transients in the LFP with broadband power, which is visible at frequencies as low as ~50 Hz. These results distinguish broadband high-gamma activity from gamma rhythms as an easily obtained and reliable electrophysiological index of neuronal firing near the microelectrode. Further, they highlight the importance of making a careful dissociation between gamma rhythms and spike-related transients that could be incorrectly decomposed as rhythms using traditional signal processing methods.  相似文献   

5.
Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability.  相似文献   

6.
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.  相似文献   

7.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

8.
Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou''s figure (bound percept) or as pairs of bars oscillating independently along cardinal axes (unbound percept). We found that beta (15–25 Hz), but not gamma (55–85 Hz) oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.  相似文献   

9.
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians'' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians'' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.  相似文献   

10.
Stimulus-induced gamma oscillations in the 30–80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.  相似文献   

11.
Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using magnetoencephalography, we show that selective nociceptive stimuli induce gamma oscillations between 60 and 95 Hz in primary somatosensory cortex. Amplitudes of pain-induced gamma oscillations vary with objective stimulus intensity and subjective pain intensity. However, around pain threshold, perceived stimuli yielded stronger gamma oscillations than unperceived stimuli of equal stimulus intensity. These results show that pain induces gamma oscillations in primary somatosensory cortex that are particularly related to the subjective perception of pain. Our findings support the hypothesis that gamma oscillations are related to the internal representation of behaviorally relevant stimuli that should receive preferred processing.  相似文献   

12.
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz) and high (60-120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.  相似文献   

13.
The aim of this study is to uncover the network dynamics of the human visual cortex by driving it with a broadband random visual flicker. We here applied a broadband flicker (1–720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) between the visual input and the MEG response. This TRF revealed an early response in the 40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band response is novel, the latter has been termed the alpha band perceptual echo. The gamma echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was subject-specific thereby reflecting the individual dynamical properties of the early visual cortex. To understand the neuronal mechanisms generating the gamma echo, we implemented a pyramidal-interneuron gamma (PING) model that produces gamma oscillations in the presence of constant input currents. Applying a broadband input current mimicking the visual stimulation allowed us to estimate TRF between the input current and the population response (akin to the local field potentials). The TRF revealed a gamma echo that was similar to the one we observed in the MEG data. Our results suggest that the visual gamma echo can be explained by the dynamics of the PING model even in the absence of sustained gamma oscillations.  相似文献   

14.
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.  相似文献   

15.
Basu S  Liljenström H 《Bio Systems》2001,63(1-3):57-69
The existence of neurons with intrinsic oscillations does not in itself explain the synchronization of local populations of neurons, but it is likely to pace population rhythms when the neurons are suitably coupled by chemical and/or electrical synapses. In the present study, we have investigated the role of spontaneously active cells as noisy or pacemaker units in setting global oscillations in a three-layered cortical model. The presence of a small number of noisy (spontaneously active) units induce oscillations at the network level in the range of the gamma rhythm. The number of noisy units in the network and their type (excitatory or inhibitory or excitatory and inhibitory together) determines the emergence of regular oscillations or aperiodic (chaotic) behaviour. It also determines the onset of the global behaviour. On replacing a noisy unit by a pacemaker unit, similar gamma oscillations were generated. With both noisy and pacemaker units, we found that certain characteristics of the spontaneous activity determine the delay period for the onset of global activity. Preliminary studies have been carried out with spontaneously active units having a chaotic dynamics but the results are much similar to that with a noisy burst. Different functional roles have been suggested for cortical oscillations, such as determining global functional states and specifying connectivity during development. Oscillations at different frequency bands, in particular in the gamma band (around 40 Hz), have also been associated with memory and attention. The presence of spontaneously active neurons, either with noisy or oscillatory activity, could be responsible for global oscillations in the absence of external stimuli in certain cortical areas in the mature brain.  相似文献   

16.
Power spectra of short-term (less than 1 s) EEG-reactions (in the frequency band of 1-225 Hz) were studied in dogs in the course of instrumental food conditioning. These reactions were observed in different areas of the cortex in response to positive and differentiated conditioned stimuli. Regional features between the spectra were found both in the power level and frequency structure. The power of the reactions in the visual and parietal areas of the left hemisphere was higher than in the motor areas. Power spectra of reactions to differentiated stimuli were significantly lower than the spectra of reactions to positive stimuli mainly owing to the high-frequency components (80-225 Hz). In these both cases, prestimulus power spectra did not differ. The frequency structure of corresponding EEG-reactions consisted of individual spectral peaks, mainly both gamma (30-80 Hz) and higher-frequency (80-225 Hz) bands.  相似文献   

17.
Oscillatory neuronal synchronization between cortical areas has been suggested to constitute a flexible mechanism to coordinate information flow in the human cerebral cortex. However, it remains unclear whether synchronized neuronal activity merely represents an epiphenomenon or whether it is causally involved in the selective gating of information. Here, we combined bilateral high-density transcranial alternating current stimulation (HD-tACS) at 40 Hz with simultaneous electroencephalographic (EEG) recordings to study immediate electrophysiological effects during the selective entrainment of oscillatory gamma-band signatures. We found that interhemispheric functional connectivity was modulated in a predictable, phase-specific way: In-phase stimulation enhanced synchronization, anti-phase stimulation impaired functional coupling. Perceptual correlates of these connectivity changes were found in an ambiguous motion task, which strongly support the functional relevance of long-range neuronal coupling. Additionally, our results revealed a decrease in oscillatory alpha power in response to the entrainment of gamma band signatures. This finding provides causal evidence for the antagonistic role of alpha and gamma oscillations in the parieto-occipital cortex and confirms that the observed gamma band modulations were physiological in nature. Our results demonstrate that synchronized cortical network activity across several spatiotemporal scales is essential for conscious perception and cognition.  相似文献   

18.
γ-band oscillations are thought to play a crucial role in information processing in cortical networks. In addition to oscillatory activity between 30 and 60 Hz, current evidence from electro- and magnetoencephalography (EEG/MEG) and local-field potentials (LFPs) has consistently shown oscillations >60 Hz (high γ-band) whose function and generating mechanisms are unclear. In the present paper, we summarize data that highlights the importance of high γ-band activity for cortical computations through establishing correlations between the modulation of oscillations in the 60-200 Hz frequency and specific cognitive functions. Moreover, we will suggest that high γ-band activity is impaired in neuropsychiatric disorders, such as schizophrenia and epilepsy. In the final part of the paper, we will review physiological mechanisms underlying the generation of high γ-band oscillations and discuss the functional implications of low vs. high γ-band activity patterns in cortical networks.  相似文献   

19.
The occipital alpha rhythm (~10 Hz) is the most prominent electrophysiological activity in the awake human brain, yet its functional role and relation to visual perception are little understood. Transient stimuli normally elicit a short series of positive and negative deflections lasting between 300 and 500 ms: the visual-evoked potential (VEP). Alpha oscillations, on the other hand, are generally suppressed by transient visual input; they only augment in response to periodic ("steady-state") inputs around 10 Hz. Here, we applied reverse-correlation techniques to the visual presentation of random, nonperiodic dynamic stimulation sequences and found that the brain response to each stimulus transient was not merely a short-lived VEP but also included a strong ~10 Hz oscillation that lasted for more than 1 s. In other words, the alpha rhythm implements an "echo" or reverberation of the input sequence. These echoes are correlated in magnitude and frequency with the observer's occipital alpha rhythm, are enhanced by visual attention, and can be rendered perceptually apparent in the form of ~10 Hz flicker. These findings suggest a role for the alpha rhythm in the maintenance of sensory representations over time.  相似文献   

20.
This study investigated how changes in nutritional motivation modulate odour-related oscillatory activities at several levels of the olfactory pathway in non-trained rats. Local field potential recordings were obtained in freely moving animals in the olfactory bulb (OB), anterior and posterior parts of the piriform cortex (APC and PPC respectively) and lateral entorhinal cortex (EC). Dynamic signal analysis detected changes in power during odour presentation for several frequency bands The results showed that in most cases odour presentation was associated with changes in a wide 15-90 Hz frequency band of activity in each olfactory structure. However, nutritional state modulated initial responses to food odour (FO) in the OB and EC selectively in the 15-30 Hz frequency band. Changes in nutritional state also modulated responses to repeated FO stimuli. Habituation was expressed differentially across structures with a clear dissociation between the two parts of the piriform cortex. Finally, systemic injections of scopolamine (0.125 mg/kg) selectively blocked expression of the nutritional modulation in the OB found in the beta band. These results suggest that internal state can differentially modulate odour processing among different olfactory areas and point to a cholinergic-sensitive beta band oscillation during presentation of a behaviourally meaningful odorant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号