首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phytochromes mediate the photoperiodic control of flowering in rice (Oryza sativa), a short-day plant. Recent molecular genetics studies have revealed a genetic network that enables the critical daylength response of florigen gene expression. Analyses using a rice phytochrome chromophore-deficient mutant, photoperiod sensitivity5, have so far revealed that within this network, phytochromes are required for expression of Grain number, plant height and heading date7 (Ghd7), a floral repressor gene in rice. There are three phytochrome genes in rice, but the roles of each phytochrome family member in daylength response have not previously been defined. Here, we revealed multiple action points for each phytochrome in the critical daylength response of florigen expression by using single and double phytochrome mutant lines of rice. Our results show that either phyA alone or a genetic combination of phyB and phyC can induce Ghd7 mRNA, whereas phyB alone causes some reduction in levels of Ghd7 mRNA. Moreover, phyB and phyA can affect Ghd7 activity and Early heading date1 (a floral inducer) activity in the network, respectively. Therefore, each phytochrome gene of rice has distinct roles, and all of the phytochrome actions coordinately control the critical daylength response of florigen expression in rice.  相似文献   

2.
Heading date determines the seasonal and regional adaptation of rice(Oryza sativa L.) varieties and is mainly controlled by photoperiod sensitivity(PS). The core heading date genes Hd1, Ghd7, DTH8, and PRR37 act synergistically in regulating the PS. In this study, we systematically analyze the heading date,PS, and agronomic traits of eight homozygous lines with various combinations of Hd1, Ghd7, and DTH8 alleles in the prr37 background under long-day(LD) and short-day(SD) conditions, respectivel...  相似文献   

3.
Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci (QTLs) have been identified. The rice (Oryza sativa L.) cultivars in the Heilongjiang Province, t...  相似文献   

4.
5.
6.
During the diversification of cultivated rice after domestication, rice was grown in diverse geographic regions using genetic variations attributed to the combination of alleles in loci for adaptability to various environmental conditions. To elucidate the key gene for adaptation in rice cultivars to the northern limit of rice cultivation, we conducted genetic analyses of heading date using extremely early-heading cultivars. The Hd5 gene controlling heading date (flowering time) generated variations in heading date among cultivars adapted to Hokkaido, where is the northernmost region of Japan and one of the northern limits of rice cultivation in the world. The association of the Hd5 genotype with heading date and genetical analysis clearly showed that the loss-of-function Hd5 has an important role in exhibiting earlier heading among a local population in Hokkaido. Distinct distribution of the loss-of-function Hd5 revealed that this mutation event of the 19-bp deletion occurred in a local landrace Bouzu and that this mutation may have been selected as an early-heading variety in rice breeding programs in Hokkaido in the early 1900s. The loss-of-function Hd5 was then introduced into the rice variety Fanny from France and contributed to its extremely early heading under the presence of functional Ghd7. These results demonstrated that Hd5 plays roles not only in generating early heading in variations of heading date among a local population in Hokkaido, but also in extremely early heading for adaptation to northern limits of rice cultivation.  相似文献   

7.
Heading date is the one of the most important traits in rice breeding, because it defines where rice can be cultivated and influences the expression of various agronomic traits. To examine the inhibition of heading by Heading date 2 (Hd2), previously detected on the distal end of chromosome 7’s long arm by quantitative trait locus (QTL) analysis, we developed backcross inbred lines (BILs) from Koshihikari, a leading Japanese cultivar, and Hayamasari, an extremely early heading cultivar. The BILs were cultivated under natural field conditions in Tsukuba Japan, and under long-day (14.5 h), extremely long-day (18 h), and short-day (10 h) conditions. Combinations of several QTLs near Hd1, Hd2, Ghd7, Hd5, and Hd16 were detected under these four conditions. Analysis of advanced backcross progenies revealed genetic interactions between Hd2 and Hd16 and between Hd2 and Ghd7. In the homozygous Koshihikari genetic background at Hd16, inhibition of heading by the Koshihikari allele at Hd2 was smaller than that with the Hayamasari Hd16 allele. Similarly, in the homozygous Koshihikari genetic background at Ghd7, the difference in heading date caused by different alleles at Hd2 was smaller than in plants homozygous for the Hayamasari Ghd7 allele. Based on these results, we conclude that Hd2 and its genetic interactions play an important role in controlling heading under long-day conditions. In addition, QTLs near Hd2, Hd16, and Ghd7, which are involved in inhibition of heading under long-day conditions, function in the same pathway that controls heading date.  相似文献   

8.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

9.
Detection of quantitative trait loci (QTLs) is dependent on the materials used in the analysis, as different combinations of parental materials may lead to different outcomes in QTLs for the same trait. On the other hand, an extreme phenotype associated with a given trait implies the potential involvement of a particular allele in various allelic interactions. A genetic factor associated with such an extreme phenotype may frequently be identified from various genetic populations consisting of different parental combinations. In this study, we attempted to uncover the genetic factor associated with extremely early heading date in rice, using various F2 populations. Heading date in rice has been characterized by at least 19 QTLs, from which 12 genes have been identified. A58, a rice strain with an extremely early heading date, is adapted to Hokkaido, the northernmost limit of rice cultivation. Six F2 populations derived from crosses of A58 with six other strains displayed a range of heading dates. Genotyping using 19 QTL markers indicated that the A58 allele of the Ghd7 locus was present in most F2 individuals exhibiting extremely early heading dates. This analysis also demonstrated that when the wild-type Ehd1 allele was present, the Ghd7 allele from A58 accelerated floral induction. The results of this study demonstrate that assorted F2 populations are valuable materials for comprehensive genotyping to explore major genetic factors for extreme phenotypes, and that this methodology is broadly applicable to other unknown traits.  相似文献   

10.

Background

High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield.

Results

An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta.

Conclusions

Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-346) contains supplementary material, which is available to authorized users.  相似文献   

11.
An association panel consisting of 185 accessions representative of the barley germplasm cultivated in the Mediterranean basin was used to localise quantitative trait loci (QTL) controlling grain yield and yield related traits. The germplasm set was genotyped with 1,536 SNP markers and tested for associations with phenotypic data gathered over 2?years for a total of 24?year?×?location combinations under a broad range of environmental conditions. Analysis of multi-environmental trial (MET) data by fitting a mixed model with kinship estimates detected from two to seven QTL for the major components of yield including 1000 kernel weight, grains per spike and spikes per m2, as well as heading date, harvest index and plant height. Several of the associations involved SNPs tightly linked to known major genes determining spike morphology in barley (vrs1 and int-c). Similarly, the largest QTL for heading date co-locates with SNPs linked with eam6, a major locus for heading date in barley for autumn sown conditions. Co-localization of several QTL related to yield components traits suggest that major developmental loci may be linked to most of the associations. This study highlights the potential of association genetics to identify genetic variants controlling complex traits.  相似文献   

12.
Li J  Chu H  Zhang Y  Mou T  Wu C  Zhang Q  Xu J 《PloS one》2012,7(3):e34231
Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.  相似文献   

13.
14.
15.
选用涉及水稻(Oryza sativa L.)全部12条染色体的、表现简单遗传且易于识别的形态标记材料27份,以早籼品种浙辐802为轮回亲本,经10余次回交,转育成一套籼型标记等基因系.在此基础上,对同一染色体上的标记进行聚合,育成了15份双标记等基因系.该套材料除所带标记性状外,生育期、株高、分蘖力和穗子大小等主要农艺性性状与轮回亲本基本相仿.  相似文献   

16.
Ghd7 is an important rice gene that has a major effect on several agronomic traits, including yield. To reveal the origin of Ghd7 and sequence evolution of this locus, we performed a comparative sequence analysis of the Ghd7 orthologous regions from ten diploid Oryza species, Brachypodium distachyon, sorghum and maize. Sequence analysis demonstrated high gene collinearity across the genus Oryza and a disruption of collinearity among non-Oryza species. In particular, Ghd7 was not present in orthologous positions except in Oryza species. The Ghd7 regions were found to have low gene densities and high contents of repetitive elements, and that the sizes of orthologous regions varied tremendously. The large transposable element contents resulted in a high frequency of pseudogenization and gene movement events surrounding the Ghd7 loci. Annotation information and cytological experiments have indicated that Ghd7 is a heterochromatic gene. Ghd7 orthologs were identified in B. distachyon, sorghum and maize by phylogenetic analysis; however, the positions of orthologous genes differed dramatically as a consequence of gene movements in grasses. Rather, we identified sequence remnants of gene movement of Ghd7 mediated by illegitimate recombination in the B. distachyon genome.  相似文献   

17.
Appropriate heading date and plant height are prerequisites for attaining the desired yield level in rice breeding programs. In this study, we analyzed the genetic bases of heading date and plant height at both single- locus and two-locus levels, using a population of 240 F2:3 families derived from a cross between two elite rice lines. Measurements for the traits were obtained over 2 years in replicated field trials. A linkage map was constructed with 151 polymorphic marker loci, based on which interval mapping was performed using Mapmaker/QTL. The analyses detected six QTLs for plant height and six QTLs for heading date; collectively the QTLs for heading date accounted for a much greater amount of phenotypic variation than did the QTLs for plant height. Two-way analyses of variance, with all possible two-locus combinations, detected large numbers (from 101 to 257) of significant digenic interactions in the 2 years for both traits involving markers distributed in the entire genome; 22 and 39 were simultaneously detected in both years for plant height and heading date, respectively. Each of the interactions individually accounted for only a very small portion of the phenotypic variation. The majority of the significant interactions involved marker loci that did not detect significant effects by single-locus analyses, and many of the QTLs detected by single-locus analyses were involved in epistatic interactions. The results clearly demonstrated the importance of epistatic interactions in the genetic bases of heading date and plant height. Received: 5 May 2001 / Accepted: 3 August 2001  相似文献   

18.
水稻T-DNA插入突变体库的筛选及遗传分析   总被引:3,自引:1,他引:3  
T-DNA标签技术是分离和研究植物功能基因的有效方法,寻找T-DNA插入表型突变体是进一步开展研究的关键所在。文章对以ZH11、ZH15为受体亲本构建的4416份T,代标签系进行了表型鉴定,发现存在拟纯合突变和系内分离突变两种类型,突变表型涉及株高、生育期、叶形、叶色、分蘖力、植株松紧度、穗颈节、穗形、颖花、粒形、类病变、雄性不育、生长极性等14类性状。其中,株高、生育期、叶色、雄性不育有着相对较高的突变频率(超过1%),株高和叶色的突变频率在品种及年度间表现稳定,而生育期、雄性不育波动较大,表明这类性状的表型易受到环境的影响。通过T1、T2连续世代的共分离分析,筛选出3个与穗部或颖花发育相关的T-DNA插入突变体,为分离相关功能基因奠定基础。随机选择42份有表型突变的标签系,通过质粒拯救和TAIL-PCR的方法分离其侧翼序列,从39个标签系中获得40条序列,其中25条为载体序列,14条与水稻基因组有很好的同源性,BlastN分析结果表明T-DNA有优先整合进植物功能基因内部的特性。  相似文献   

19.
Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.  相似文献   

20.
We report here the RFLP mapping of quantitative triat loci (QTLs) that affect some important agronomic traits in cultivated rice. An anther culturederived doubled haploid (DH) population was established from a cross between an indica and a japonica rice variety. On the basis of this population a molecular linkage map comprising 137 markers was constructed that covered the rice genome at intervals of 14.8cM on average. Interval mapping of the linkage map was used to locate QTLs for such important agronomic traits as heading date, plant height, number of spikelets per panicle, number of grains Per panicle, 1000-grain weight and percentage of seed set. Evidence of genotype-byenvironment interaction was found by comparing QTL maps of the same population grown in three diverse environments. A total of 22 QTLs for six agronomic traits were detected that were significant in at least one environment, but only 7 were significant in all three environments, 7 were significant in two environments and 8 could only be detected in a single environment. However, QTL-by-environment interaction was traitdependent. QTLs for spikelets and grains per panicle were common across environments, while traits like heading date and plant height were more sensitive to environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号