首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Menin is a gene product of multiple endocrine neoplasia type1 (Men1), an inherited familial cancer syndrome characterized by tumors of endocrine tissues. To gain insight about how menin performs an endocrine cell-specific tumor suppressor function, we investigated the possibility that menin was integrated in a cancer-associated inflammatory pathway in a cell type-specific manner. Here, we showed that the expression of IL-6, a proinflammatory cytokine, was specifically elevated in mouse islet tumor cells upon depletion of menin and Men−/− MEF cells, but not in hepatocellular carcinoma cells. Histone H3 lysine (K) 9 methylation, but not H3 K27 or K4 methylation, was involved in menin-dependent IL-6 regulation. Menin occupied the IL-6 promoter and recruited SUV39H1 to induce H3 K9 methylation. Our findings provide a molecular insight that menin-dependent induction of H3 K9 methylation in the cancer-associated interleukin gene might be linked to preventing endocrine-specific tumorigenesis.  相似文献   

2.
3.
Multiple endocrine neoplasia type I (MEN1) is a hereditary tumor syndrome characterized by multiple endocrine and occasionally non-endocrine tumors. The tumor suppressor gene Men1, which is frequently mutated in MEN1 patients, encodes the nuclear protein menin. Although many tumor suppressor genes are involved in the regulation of apoptosis, it is unclear whether menin facilitates apoptosis. Here we show that ectopic overexpression of menin via adenoviruses induces apoptosis in murine embryonic fibroblasts. The induction of apoptosis depends on Bax and Bak, two proapoptotic proteins. Moreover, loss of menin expression compromises apoptosis induced by UV irradiation and tumor necrosis factor-alpha (TNF-alpha), whereas complementation of menin-null cells with menin restores sensitivity to UV- and TNF-alpha-induced apoptosis. Interestingly, loss of menin reduces the expression of procaspase 8, a critical protease that is essential for apoptosis induced by death-related receptors, whereas complementation of the menin-null cells up-regulates the expression of procaspase 8. Furthermore, complementation of menin-null cells with menin increases the activation of caspase 8 in response to TNF-alpha treatment. These results suggest a proapoptotic function for menin that may be important in suppressing the development of MEN1.  相似文献   

4.
The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.  相似文献   

5.
6.
7.
8.
Multiple endocrine neoplasia type 1 (MEN1) is a rare but informative syndrome for endocrine tumorigenesis. Since its isolation, several groups have begun to determine the role of menin, the protein product of MEN1, in sporadic endocrine tumors as well as tumors of the MEN1 syndrome. Mutations of menin have been reported in more than 400 families and tumors, most of which are truncating mutations, thus supporting the function of menin as a tumor suppressor. The exact function of menin is unknown, but overexpression of menin inhibits proliferation of Ras-transformed NIH3T3 cells. Since menin interacts with proteins from both the TGF beta and AP-1 signaling pathways, perhaps its tumor suppressor function is related to these key cell growth pathways. In this review we will discuss the various clinical manifestations of MEN1 syndrome, potential mechanisms of MEN1 tumorigenesis, and mutations associated with MEN and sporadic endocrine tumors.  相似文献   

9.
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.  相似文献   

10.
11.
12.
13.
The expression of insulin-like growth factor 2 (IGF2), a classical imprinting gene, didn't completely correlate with its imprinting profiles in hepatocellular carcinoma (HCC). The mechanistic importance of promoter activity in regulation of IGF2 has not been fully clarified. Here we show that histone 3 lysine 4 trimethylation (H3K4me3) modified by menin-MLL complex of IGF2 promoter contributes to promoter activity of IGF2. The strong binding of menin and abundant H3K4me3 at the DNA demethylated P3/4 promoters were observed in Hep3B cells with the robust expression of IGF2. In IGF2-low-expressing HepG2 cells, menin didn't bind to DNA hypermethylated P3/4 regions; however, menin overexpression inhibited DNA methylation and promoted H3K4me3 at the P3/4 as well as IGF2 expression in HepG2. In addition, the H3K4me3 at P3/4 locus was activated in primary HCC specimens with high IGF2 expression. Furthermore, inhibition of the menin/MLL interaction via MI-2/3 reduced IGF2 expression, inhibited the IGF1R-AKT pathway, and significantly repressed HCC with robust expression of IGF2. Taken together, we conclude that H3K4me3 of P3/4 locus mediated by the menin-MLL complex is a novel epigenetic mechanism for releasing IGF2.  相似文献   

14.
15.
16.
17.
谢晶  范辰  张景龙  张仕强 《遗传》2018,40(3):237-249
H3K4me3是一种重要的表观遗传修饰,主要由MLL(mixed lineage leukemia)甲基转移酶复合体催化,对小鼠胚胎干细胞(mouse embryonic stem cells, mESCs)自我更新能力的维持具有重要作用。ASH2L是MLL复合体中一个重要的核心亚单位,参与调控mESCs中染色质的开放状态。ASH2L在mESCs中有2个异构体:ASH2L-1(80 kDa)和ASH2L-2(65 kDa),且以ASH2L-2的表达为主;而在小鼠胚胎成纤维细胞(mouse embryonic fibroblast, MEF)中,只有ASH2L-1表达。目前,Ash2l-1Ash2l-2在mESCs中的作用尚不清楚。本文利用CRISPR/Cas9基因组编辑技术,建立了Ash2l-1 -/-Ash2l-2 -/-mESCs。通过碱性磷酸酶染色、免疫荧光染色和qRT-PCR发现,Ash2l-1 -/-Ash2l-2 -/-mESCs在碱性磷酸酶、多能性调控转录因子(Oct4NanogSox2Klf4)的表达与野生型对照无显著差异。通过拟胚体分化实验,发现Ash2l-1 -/-mESCs诱导的拟胚体在Snai2(外胚层标记基因)和Gata4(内胚层标记基因)的表达上显著低于野生型mESCs诱导的拟胚体(P<0.01)。通过Western blotting,发现Ash2l-1 -/-mESCs中ASH2L-2的表达显著上调(P<0.01),Ash2l-2 -/-mESCs中ASH2L-1的表达显著上调(P<0.01),而Ash2l-1 -/-Ash2l-2 -/-mESCs中,基因组H3K4me3的表达与野生型对照并无显著差异。这表明Ash2l-1Ash2l-2之间存在补偿效应。利用JASPAR和KEGG预测分析发现,Ash2l-1Ash2l-2启动子区分别具有3个和16个潜在的多能性转录因子结合位点,这些转录因子可能介导实现Ash2l-1Ash2l-2之间的补偿效应。以上结果表明,Ash2l-1Ash2l-2之间的补偿效应可能参与mESCs多能性的维持和基因组H3K4me3的调控。  相似文献   

18.
19.
Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an α-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two α-helical bundles and covered by a β-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.  相似文献   

20.
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号