首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.  相似文献   

2.
3.
Adipose tissue plays a central role regulating the balance between deposition and mobilization of lipid reserves. Lipoprotein lipase (LPL) is a key enzyme controlling lipid accumulation in mammals and fish. In the present study, we have examined the expression of LPL in rainbow trout cultured adipocytes and we have investigated the effect of troglitazone, a member of thiazolidinediones (TZDs), and insulin on its expression. LPL gene expression increased from day 1 until day 12 of culture, and the level was maintained up to day 21. The addition of insulin at 10 nM and 1.7 μM increased significantly LPL gene expression in undifferentiated cells (days 7 to 12 maintained in growth medium). Nevertheless, treatment of day 7 cells incubated in growth medium with troglitazone (5 μM) or troglitazone plus insulin (1 μM each), tended to enhance LPL expression. In addition, LPL mRNA levels increased significantly in the presence of 1 μM and 5 μM of troglitazone (days 7 to 12) when the cells were induced to differentiate by addition of differentiation medium. Although troglitazone alone (1 μM) did not stimulate lipid accumulation in the cells neither in growth nor in differentiation medium, the simultaneous presence of troglitazone (1 μM) and insulin (1 μM) increased significantly the content of triglycerides in adipocyte cells maintained in growth medium (days 7 to 12). These results indicate that insulin and troglitazone regulate LPL gene expression during adipocyte differentiation and suggest that both factors may have combined effects in the modulation of adipogenesis.  相似文献   

4.
5.
Understanding the process of adipogenesis is critical if suitable therapeutics for obesity and related metabolic diseases are to be found. The current study presents proof of feasibility of creating a 3-D spheroid model using human adipose-derived stem cells (hASCs) and their subsequent adipogenic differentiation. hASC spheroids were formed atop an elastin-like polypeptide-polyethyleneimine (ELP-PEI) surface and differentiated using an adipogenic cocktail. Spheroids were matured in the presence of dietary fatty acids (linoleic or oleic acid) and evaluated based on functional markers including intracellular protein, CD36 expression, triglyceride accumulation, and PPAR-γ gene expression. Spheroid size was found to increase as the hASCs matured in the adipocyte maintenance medium, though the fatty acid treatment generally resulted in smaller spheroids compared to control. A stable protein content over the 10-day maturation period indicated contact-inhibited proliferation as well as minimal loss of spheroids during culture. Spheroids treated with fatty acids showed greater amounts of intracellular triglyceride content and greater expression of the key adipogenic gene, PPAR-γ. We also demonstrated that 3-D spheroids outperformed 2-D monolayer cultures in adipogenesis. We then compared the adipogenesis of hASC spheroids to that in 3T3-L1 spheroids and found that the triglyceride accumulation was less profound in hASC spheroids than that in 3T3-L1 adipocytes, correlated with smaller average spheroids, suggesting a relatively slower differentiation process. Taken together, we have shown the feasibility of adipogenic differentiation of patient-derived hASC spheroids, which with further development, may help elucidate key features in the adipogenesis process.  相似文献   

6.
Recent findings indicate that microRNAs (miRNAs) are involved in the regulatory network of adipogenesis and obesity. Thus far, only a few human miRNAs are known to function as adipogenic regulators, fanning interest in studies on the functional role of miRNAs during adipogenesis in humans. In a previous study, we used a microarray to assess miRNA expression during human preadipocyte differentiation. We found that expression of the miR-26b was increased in mature adipocytes. MiR-26b is an intronic miRNA located in the intron of CTDSP1 (carboxy terminal domain, RNA polymerase II, polypeptide A, small phosphatase 1). Target prediction and Renilla luciferase analyses revealed the phosphatase and tensin homolog gene (PTEN) as a putative target gene. In this study, we found that miR-26b was gradually upregulated during adipocyte differentiation. To understand the roles of miR-26b in adipogenesis, we adopted a loss-of-function approach to silence miR-26b stably in human preadipocytes. We found that miR-26b inhibition effectively suppressed adipocyte differentiation, as evidenced by decreased lipid droplets and the ability of miR-26b to decrease mRNA levels of adipocyte-specific molecular markers and triglyceride accumulation. Furthermore, the cell growth assay revealed that miR-26b inhibition promoted proliferation. Nevertheless, it had no effect on apoptosis. Taken together, these data indicate that miR-26b may be involved in adipogenesis and could be targeted for therapeutic intervention in obesity.  相似文献   

7.
Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.  相似文献   

8.
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.  相似文献   

9.
Ishii I  Ikeguchi Y  Mano H  Wada M  Pegg AE  Shirahata A 《Amino acids》2012,42(2-3):619-626
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N 1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.  相似文献   

10.
Here we show that plasma kallikrein (PKal) mediates a plasminogen (Plg) cascade in adipocyte differentiation. Ecotin, an inhibitor of serine proteases, inhibits cell-shape change, adipocyte-specific gene expression, and lipid accumulation during adipogenesis in culture. Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution. PKal, which is inhibited by ecotin, is required for adipose conversion, Plg activation and 3T3-L1 differentiation. Human plasma lacking PKal does not support differentiation of 3T3-L1 cells. PKal is therefore a physiological regulator that acts in the Plg cascade during adipogenesis. We propose that the Plg cascade fosters adipocyte differentiation by degradation of the fibronectin-rich preadipocyte stromal matrix.  相似文献   

11.
12.
Lipid droplets (LDs) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well studied in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell lines. However, most techniques for measuring LD accumulation are either not quantitative or can be destructive to samples. Here, we describe a novel, label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics based on automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-QuanT is a robust, nondestructive, time- and cost-effective method compared with other triglyceride accumulation assays based on enzymatic digest or lipophilic staining. Further, we applied LipiD-QuanT to measure the effect of four potential pro- or antiobesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our results revealed that 2 µmol/l rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Isorhamnetin represses adipogenesis in 3T3-L1 cells   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号