首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many lichen species produce both sexual and asexual propagules, but, aside from being minute, these diaspores lack special adaptations for long-distance dispersal. So far, molecular studies have not directly addressed isolation and genetic differentiation of lichen populations, both being affected by gene flow, at a regional scale. We used six mycobiont-specific microsatellite loci to investigate the population genetic structure of the epiphytic lichen Lobaria pulmonaria in two regions that strongly differed with respect to anthropogenic impact. In British Columbia, L. pulmonaria grows in continuous old-growth forests, while its populations in the old cultural landscape of Switzerland are comparably small and fragmented. Populations from both British Columbia and Switzerland were genetically diverse at the loci. Geographically restricted alleles, low historical gene flow, and analyses of genetic distance (upgma tree) and of differentiation (amova) indicated that populations from Vancouver Island and from the Canadian mainland were separated from each other, except for one, geographically intermediate population. This differentiation was attributed to different glacial and postglacial histories of coastal and inland populations in British Columbia. In contrast to expectations, the three investigated Swiss populations were genetically neither isolated nor differentiated from each other despite the long-lasting negative human impact on the lichen's range size in Central Europe. We propose that detailed studies integrating local landscape and regional scales are now needed to understand the processes of dispersal and gene flow in lichens.  相似文献   

2.
The foliose epiphytic lichen Lobaria pulmonaria has suffered a significant decline in European lowlands during the last decades and therefore is considered as endangered throughout Europe. An assessment of the genetic variability is necessary to formulate biologically sound conservation recommendations for this species. We investigated the genetic diversity of the fungal symbiont of L. pulmonaria using 143 specimens sampled from six populations (two small, one medium, three large) in the lowland, the Jura Mountains, the pre-Alps and the Alps of Switzerland. Among all nuclear and mitochondrial regions sequenced for this study, variability was found only in the internal transcribed spacer (ITS I), with three polymorphic sites, and in the nuclear ribosomal large subunit (nrLSU), with four polymorphic sites. The variable sites in the nrLSU are all located within a putative spliceosomal intron. We sequenced these two regions for 81 specimens and detected six genotypes. Two genotypes were common, two were found only in the more diverse populations and two were found only in one population each. There was no correlation between population size and genetic diversity. The highest genetic diversity was found in populations where the fungal symbiont is reproducing sexually. Populations with low genetic diversity included only the two same common genotypes. Our study provides evidence suggesting that L. pulmonaria is self-incompatible and heterothallic. Based on our results we give populations with sexually reproducing individuals a higher rank in terms of conservation priority than strictly asexual populations. The remaining lowland populations are so small, that one single catastrophic event such as a windthrow might destroy the entire population. Hence we suggest augmenting such populations in size and genetic diversity using small thallus fragments or vegetative diaspores collected in other populations. As we did not detect any locally adapted genotypes, these transplants can be taken from any other genetically diverse population in Switzerland.  相似文献   

3.
Endozoochory plays a prominent role for the dispersal of seed plants. However, for most other plant taxa it is not known whether this mode of dispersal occurs at all. Among those other taxa, lichens as symbiotic associations of algae and fungi are peculiar as their successful dispersal requires movement of propagules that leaves the symbiosis functional. However, the potential for endozoochorous dispersal of lichen fragments has been completely overlooked. We fed sterile thalli of two foliose lichen species (Lobaria pulmonaria and Physcia adscendens) differing in habitat and air-quality requirements to nine snail species common in temperate Europe. We demonstrated morphologically that L. pulmonaria regenerated from 29.0% of all 379 fecal pellets, whereas P. adscendens regenerated from 40.9% of all 433 fecal pellets, showing that lichen fragments survived gut passage of all snail species. Moreover, molecular analysis of regenerated lichens confirmed the species identity for a subset of samples. Regeneration rates were higher for the generalist lichen species P. adscendens than for the specialist lichen species L. pulmonaria. Furthermore, lichen regeneration rates varied among snail species with higher rates after gut passage of heavier snail species. We suggest that gastropods generally grazing on lichen communities are important, but so far completely overlooked, as vectors for lichen dispersal. This opens new ecological perspectives and questions the traditional view of an entirely antagonistic relationship between gastropods and lichens.  相似文献   

4.
Propagation, whether sexual or asexual, is a fundamental step in the life cycle of every organism. In lichenized fungi, a great variety of vegetative propagules have evolved in order for the symbiotic partners to disperse simultaneously. For lichens with the ability of sexual and asexual reproduction, the relative contribution of vegetative dispersal is unknown but could, nonetheless, be inferred by studying genotype distribution. The genetic structure of three Lobaria pulmonaria (Lobariaceae) populations from Switzerland was investigated based on the observed variation at six microsatellite loci. All three populations had a clustered distribution of identical genotypes at small spatial scales. The maximum distance between identical genotypes was 230 m. At a distance of 350 m from a source tree, seemingly suitable habitat patches were too far apart to be colonized. Some multilocus genotypes were frequent within local populations but no genotypes were shared among populations. The restricted occurrences of common genotypes as well as the clustered distributions are evidence for a limited dispersal of vegetative propagules in L. pulmonaria. Gene flow among isolated populations will ultimately depend on the capacity of long-distance dispersal and thus probably depend on sexual reproduction.  相似文献   

5.
Abstract Ant seed dispersal distances are typically small, averaging less than 1 m in published studies. Here, a new record (180 m) for ant seed dispersal distance is reported, and preliminary observations are made on the interaction between meat ants Iridomyrmex viridiaeneus Viehmeyer (Hymenoptera: Formicidae) and diaspores of the sandhill wattle, Acacia ligulata A. Cunn. ex Benth. (Fabaceae) in Kinchega National Park, New South Wales (NSW), Australia. Iridomyrmex viridiaeneus moved diaspores over distances of 7–180 m (mean 93.9 m) from the source trees to their nests, removed the arils underground and discarded the seeds over a 3000‐m2 area surrounding the nest. A germination trial determined that the viability of discarded seeds was 40%, with 80% of the viable seeds in a dormant condition. Although the cumulative effects of I. viridiaeneus on A. ligulata recruitment require further investigation, this study and others raise the possibility that myrmecochorous systems in the Australian arid zone may be characterized by longer dispersal distances than those in other parts of the world. Long‐distance seed movement by ants lends credence to the hypothesis that distance dispersal (in contrast to directed dispersal) could be of benefit to myrmecochorous plants.  相似文献   

6.
Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen   总被引:2,自引:1,他引:1  
Epiphytes are strongly affected by the population dynamics of their host trees. Owing to the spatio-temporal dynamics of host tree populations, substantial dispersal rates--corresponding to high levels of gene flow--are needed for populations to persist in a landscape. However, several epiphytic lichens have been suggested to be dispersal-limited, which leads to the expectation of low gene flow at the landscape scale. Here, we study landscape-level genetic structure and gene flow of a putatively dispersal-limited epiphytic lichen, Lobaria pulmonaria. The genetic structure of L. pulmonaria was quantified at three hierarchical levels, based on 923 thalli collected from 41 plots situated within a pasture-woodland landscape and genotyped at six fungal microsatellite loci. We found significant isolation by distance, and significant genetic differentiation both among sampling plots and among trees. Landscape configuration, i.e. the effect of a large open area separating two forested regions, did not leave a traceable pattern in genetic structure, as assessed with partial Mantel tests and analysis of molecular variance. Gene pools were spatially intermingled in the pasture-woodland landscape, as determined by Bayesian analysis of population structure. Evidence for local gene flow was found in a disturbed area that was mainly colonized from nearby sources. Our analyses indicated high rates of gene flow of L. pulmonaria among forest patches, which may reflect the historical connectedness of the landscape through gene movement. These results support the conclusion that dispersal in L. pulmonaria is rather effective, but not spatially unrestricted.  相似文献   

7.
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.  相似文献   

8.
Diaspore (e.g. seeds, fruits) dispersal is pivotal for plant communities and often involves several steps and different dispersing agents. Most studies focusing on diaspore dispersal by animals have highlighted the role of vertebrates, neglecting the role of ants in the diaspore dispersal of non-myrmecochorous plants. Diaspore dispersal by ants is especially relevant in the current scenario of declining of vertebrate populations and, consequently, collapse of the dispersal system of large-seeded plants. Although ants can never compensate for the dispersal service provided by vertebrates, they can mitigate the impact of vertebrate decline via removal of diaspores deposited on the ground. We have used a meta-analytical approach to investigate the contribution of ants in the removal of non-myrmecochorous diaspores (through vertebrate exclusion experiments). We considered the number of diaspore removal as effect size and factors such as plant growth forms, diaspore and ant size, habitat type as moderators. In addition, we investigated the role of such factors on the diaspore removal distance by ants. Ants played complementary role to non-myrmecochorous diaspore removal services provided by vertebrates (mean Hedges’ g of −0.30). The ant diaspore removal was 69% higher for diaspores from shrubs than that of tree diaspores and removal of small-sized diaspores were 69% and 70% higher in comparison to medium- and large-sized diaspores, respectively. Regarding the diaspore removal distance by ants, those of tree species were removed 32% farther than those of shrub species, and diaspores were removed three- times farther in the savanna than in rainforest ecosystems. Our results highlight the shrubs and small-sized diaspores. Regarding the diaspore removal distance, the ants can be crucial for the dispersal of tree diaspores and in the savanna ecosystems. Finally, considering the biodiversity crisis, the ants may play an even more important role than appreciated in diaspores dispersal.  相似文献   

9.
Oceanic islands emerge lifeless from the seafloor and are separated from continents by long stretches of sea. Consequently, all their species had to overcome this stringent dispersal filter, making these islands ideal systems to study the biogeographic implications of long‐distance dispersal (LDD). It has long been established that the capacity of plants to reach new islands is determined by specific traits of their diaspores, historically called dispersal syndromes. However, recent work has questioned to what extent such dispersal‐related traits effectively influence plant distribution between islands. Here we evaluated whether plants bearing dispersal syndromes related to LDD – i.e. anemochorous (structures that favour wind dispersal), thalassochorous (sea dispersal), endozoochorous (internal animal dispersal) and epizoochorous (external animal dispersal) syndromes – occupy a greater number of islands than those with unspecialized diaspores by virtue of their increased dispersal ability. We focused on the native flora of the lowland xeric communities of the Canary Islands (531 species) and on the archipelago distribution of the species. We controlled for several key factors likely to affect the role of LDD syndromes in inter‐island colonization, namely: island geodynamic history, colonization time and phylogenetic relationships among species. Our results clearly show that species bearing LDD syndromes have a wider distribution than species with unspecialized diaspores. In particular, species with endozoochorous, epizoochorous and thalassochorous diaspore traits have significantly wider distributions across the Canary archipelago than species with unspecialized and anemochorous diaspores. All these findings offer strong support for a greater importance of LDD syndromes on shaping inter‐island plant distribution in the Canary Islands than in some other archipelagos, such as Galápagos and Azores.  相似文献   

10.
Pizo  Marco A.  Oliveira  Paulo S. 《Plant Ecology》2001,157(1):37-52
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores – secondary dispersal and/or increased germination – varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.  相似文献   

11.
Destruction and fragmentation of habitats represent one of the most important threats for biodiversity. Here, we examined the effects of fragmentation in Mediterranean forests on the epiphytic lichen Lobaria pulmonaria (Lobariaceae). We tested the hypothesis that not only the level of fragmentation affects L. pulmonaria populations, but also the quality of the habitat and the nature of the surrounding matrix affect them. The presence and abundance of the lichen was recorded on 2039 trees in a total of 31 stands. We recorded habitat quality and landscape variables at three hierarchical levels: tree, plot, and patch. We found that L. pulmonaria tends to occur in trees with larger diameters in two types of surveyed forests. In Quercus pyrenaica patches, the mean diameter of colonized trees was smaller, suggesting the importance of bark roughness. Factors affecting the presence and cover of the lichen in each type of forest were different. There was a strong positive influence of distance from a river in beech forests, whereas proximity to forest edge positively affected in oak forests. The influence of the surrounding matrix was also an important factor explaining the epiphytic lichen abundance.  相似文献   

12.
Morphological and aerodynamic traits affecting mean potential dispersal distance are quantified for wind-dispersed diaspores of tree species on Barro Colorado Island, Panama. The sample includes 34 species in 16 families and represents six aerodynamic groups. Mass and area (maximum cross section) each vary over six orders of magnitude among the species. In contrast, wing-loading, defined as weight divided by area, varies over only one order of magnitude, as does the rate of descent. While the regression of rate of descent on the square root of wing-loading is significant overall, the slopes vary significantly among five aerodynamic groups. At comparable wing-loading values, diaspores of fluffy kapok fall faster than four other aerodynamic groups and rolling autogyros fall faster than non-rolling autogyros. Assuming the diaspores are released from their typical tree height and experience a mean windspeed of 1.75 m sec−-1, the expected mean dispersal distance varies among the 34 species from 22 to 194 m. Rate of descent is weakly correlated with shade tolerance of seedlings for a subset of 18 species; rate of descent is more strongly correlated with the log of dry mass of seed for all 34 species. Given these wide differences in dispersal potential, any generalizations about tropical trees that use wind dispersal are of dubious value.  相似文献   

13.
Aims How seed dispersal distance is related to various factors is a major challenge for seed ecologists. However, there are different answers as to which factor is most important in determining wind dispersal distance. This study is to quantitatively describe the relationship between various factors and primary wind dispersal distance of winged diaspores.Methods The dispersal distances of five morphologies of winged diaspores in Zygophyllum xanthoxylum (Zygophyllaceae) were measured under controlled conditions in a wind tunnel. The explanatory power of environmental factor (i.e. wind speed), plant trait (i.e. release height) and diaspore attributes (i.e. wing loading (the ratio of diaspore mass to projected area), settlement-velocity, shape index (the variance of diaspore length, width and thickness)) to the variation in dispersal distance was assessed by releasing diaspores at varying wind speeds and release heights.Important findings Wind speed and seed release height were the strongest explanatory factors to dispersal distance, contributing 41.1% and 24.8% (P < 0.01) to total variation in dispersal distance, respectively. Wind speed accounted more for relatively light disc-shaped seeds than for relatively heavy spherical seeds. Wing loading, shape index and settlement-velocity explained 9.0% (P < 0.01), 1.4% (P < 0.01) and 0.9% (not significant) of the variation in dispersal distance, respectively. From disc-shaped to four-winged diaspores, relative contributions of wing loading and shape index decreased but contribution of settlement-velocity increased. The relative contributions of various factors to wind seed dispersal distance may change with the change in seed morphology.  相似文献   

14.
Dispersal patterns from seven terricolous lichen species, with a high capacity for asexual reproduction by fragmentation (Cetraria muricata, Cladonia species), were studied in differing vegetation types in north-eastern Germany. Marked lichen thalli were fragmented by trampling. After 15 days the spread of thallus fragments was monitored. Whereas most of the fragments that were dispersed by wind remained within a 20-cm radius from the source, the maximal dispersal distance was 57 cm in a dry sand grassland and 68 cm in an open pioneer pine forest. Dispersal was negligible in a closed old-growth pine forest. Several fragmented lichen cushions were disturbed and removed by animals, and led to a maximal dispersal distance of 9·70 m. These results suggest that: (a) thallus fragments provide good short-distance dispersal in open vegetation, but are inefficient for long-distance dispersal, and (b) wind and animals are important factors for the dispersal of thallus fragments. For restoration management of man-made substrata, artificial introduction of lichen thalli is proposed.  相似文献   

15.
Experimental and structural investigations of anemochorous dispersal   总被引:3,自引:1,他引:2  
Hensen  Isabell  Müller  Caroline 《Plant Ecology》1997,133(2):169-180
The present paper describes the anemochorous dispersal of representative diaspores of Asteraceae, Dipsacaceae, and Poaceae from xerothermic grassland communities of Central and Northeastern Germany. For eleven species, potential dispersal distance was determined by fall velocity experiments as well as by taking into account the diaspore flight angle under the influence of an artificially-produced, regularly, and horizontally blowing air stream. The latter is a new and comparatively simple method enabling the implementation of mathematical formulas which describe the potential flight capacity of a diaspore for different wind speeds and exposition heights. Surface structures, shown by a scanning electron microscope, were consulted for the interpretation of results.Of the species considered, the best fliers are the diaspores of Asteraceae and Melica ciliata (Poaceae) characterized by a plumous pappus or a hairy lemma. The wing-like attachments of the diaspores of the other investigated Poaceae and Dipsacaceae are clearly less efficient for wind dispersal.The fall rates of the investigated species agree to a great extent with literature data. But a critical comparison of both methods employed shows that fall velocity as a measure of horizontal diaspore flight capacity is only suitable for low wind force < 2 m s-1. With increasing wind force, the dispersal distance of a flying diaspore does not rise in a linear, but rather in an approximately quadratic manner. Thus, in nature, conditions of higher wind forces may be very important for the reachable dispersal distances of well-flying diaspores. This could be of particular significance for nature conservation concepts concerning the vulnerability of species towards isolation within fragmented landscapes.  相似文献   

16.
Two populations of the lichen Lobaria pulmonaria. growing on aspens and goat willows in 12 and 20 km2 study areas of boreal forest in Finland, were surveyed thoroughly to investigate the factors influencing the spatial distribution of the lichen. In one study area, where forestry has been intensive and old-growth forest is highly fragmented, L, pulmonaria was sparse and grew mostly on willows. In contrast, a large and continuous virgin forest area supported a higher incidence of L. pulmonaria. with the lichen being common on both aspens and willows. In both study areas, the distributions of aspen and willow were clumped over the scales of 100-1000 m. The spatial pattern of L pulmonaria was more clumped in the managed forest than in the virgin forest. The reduced incidence of the lichen on aspens in the managed area was attributed to a disruption of habitat continuity and small average tree size. There was no comparable reduction in the incidence on willows, probably because the willow had a very aggregated distribution in the managed area, which probably facililated local colonization of the lichen. Presence of the lichen was significantly related to size-corrected local density of aspen and willow trees as well as to spatial connectivity to neighboring lichen-occupied trees.  相似文献   

17.
Propagation, dispersal, and establishment are fundamental population processes, and are critical stages in the life cycle of an organism. In symbiotic organisms such as lichens, consisting of a fungus and a population of photobionts, reproduction is a complex process. Although many lichens are able to reproduce both sexually and asexually, the extent of vegetative propagation within local populations is unknown. We used six polymorphic microsatellite loci to investigate whether recombination is common in natural populations, and to assess if and how clonal reproduction influences the spatial genetic structure within populations of the epiphytic lichen species Lobaria pulmonaria. High genetic diversity within all 12 investigated populations and evidence of recombination, from various tests, indicated that L. pulmonaria is a predominantly outcrossing species. Nevertheless, clonality occurred in all populations, but the presence of recurring multilocus genotypes influenced the spatial genetic structure only within low-density populations. This could be interpreted as indicative of genetic bottlenecks owing to increased habitat loss and disturbance. Consequently, for a predominantly outcrossing lichen species, exogenous factors might be substantially altering population processes and hence genetic structure.  相似文献   

18.
19.
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat‐tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long‐distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin‐tailed kernels. Here, we use a well‐established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat‐tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore‐dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (, amova , IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.  相似文献   

20.
Lichens associated with old forest are commonly assumed to be negatively affected by tree logging or natural disturbances. However, in this study performed in a spruce-dominated sylvopastoral landscape in the Swiss Jura Mountains, we found that genetic diversity of the epiphytic old-forest lichen Lobaria pulmonaria depends on the type of disturbance. We collected 923 thalli from 41 sampling plots of 1 ha corresponding to the categories stand-replacing disturbance (burnt), intensive logging (logged) and uneven-aged forestry (uneven-aged), and analysed the thalli at six mycobiont-specific microsatellite loci. We found evidence for multiple independent immigrations into demes located in burnt and logged areas. Using spatial autocorrelation methods, the spatial scale of the genetic structure caused by the clonal and recombinant component of genetic variation was determined. Spatial autocorrelation of genotype diversity was strong at short distances up to 50 m in logged demes, up to 100 m in uneven-aged demes, with the strongest autocorrelation up to 150 m for burnt demes. The spatial autocorrelation was predominantly attributed to clonal dispersal of vegetative propagules. After accounting for the clonal component, we did not find significant spatial autocorrelation in gene diversity. This pattern may indicate low dispersal ranges of clonal propagules, but random dispersal of sexual ascospores. Genetic diversity was highest in logged demes, and lowest in burnt demes. Our results suggest that genetic diversity of epiphytic lichen demes may not necessarily be impacted by stand-level disturbances for extended time periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号