首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents data identifying adenosine 3',5'-diphosphate (3',5'-ADP) as the small heat-stable factor essential for the active steroid binding complex of the adrenocortical pregnenolone-binding protein (PBP). Factor activity obtained from the boiled supernatant of partially purified PBP was isolated by high performance liquid chromatography using weak anion-exchange and hydrophobic (C18) chromatography sequentially. The purified material retained characteristic factor activity and presented a UV spectrum identical to that for authentic 3',5'-ADP. Mass spectroscopic analysis of the isolated factor revealed an M-H ion of appropriate mass (m/z = 426) and a decomposition pattern for the M-H ion that was consistent with the structure of 3',5'-ADP. The studies presented here demonstrate that authentic 3',5'-ADP can categorically substitute for factor prepared from the soluble fraction of the guinea pig adrenal. Specifically, 3',5'-ADP potentiated ligand binding of partially purified native PBP and restored binding capacity to alkaline phosphatase-inactivated PBP in a dose-dependent manner. As is the case for adrenocortical factor activity, these effects were negated by pretreating the 3',5'-ADP with calf intestinal alkaline phosphatase. Other nucleotides similarly tested, including ADP isomers, were ineffective as factor substitutes. The sulfated form of 3',5'-ADP (i.e. 3'-phosphoadenosine 5'-phosphosulfate) demonstrated some potential for restoring binding capacity to phosphatase-inactivated PBP; however, this compound was clearly inhibitory rather than stimulatory for native PBP activity. Taken collectively, the data overwhelmingly demonstrate that 3',5'-ADP is in fact the molecule required by the PBP for high affinity steroid binding complex formation. It is not yet known whether 3',5'-ADP acts allosterically or contributes directly to the structure of the steroid binding site.  相似文献   

2.
The pregnenolone-binding protein (PBP) in guinea pig adrenocortical cytosol is inactivated (converted to a nonsteroid-binding form) by incubation with calf intestinal alkaline phosphatase at pH 9. Previously bound pregnenolone does not prevent this inactivation, and dephosphorylation causes dissociation of bound ligand from the protein. Cytosolic PBP, partially purified PBP, and highly purified PBP are equally susceptible to alkaline phosphatase-mediated inactivation. No change in apparent molecular weight or immunoreactivity is evident by Western blot analysis. Loss of pregnenolone-binding capacity of cytosolic PBP (but not partially purified PBP) could be reversed by inhibiting the phosphatase, lowering the pH to approximately 7, and adding ATP to the incubation. Reactivation is absolutely and specifically dependent upon ATP, which restores binding capacity in a concentration-dependent manner. Other nucleoside triphosphates, including the nonhydrolyzable ATP analogue adenosine 5'-(beta, gamma-imido)triphosphate, as well as cAMP and cGMP are ineffectual as cofactors for reactivation. These data strongly implicate a cytosolic kinase which is apparently inactivated or separated from PBP during purification. Preliminary investigations indicate that the reactivating kinase is not cAMP-dependent, but may have a requirement for calcium and/or calmodulin. The identification of phosphorylation/dephosphorylation as the regulatory mechanism for steroid binding should prove pivital in elucidating the functional role of PBP.  相似文献   

3.
Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an endogenous heat-stable protein with an apparent Mr of 12,300 by Sephadex G-50 chromatography. This endogenous receptor-activating protein coelutes on Sephadex G-50 chromatography with endogenous thioredoxin activity, and it can be replaced in the activating system by purified Escherichia coli thioredoxin. These observations suggest that glucocorticoid receptors in cytosol preparations are maintained in a reduced, steroid-binding state by a NADPH-dependent, thioredoxin-mediated reducing system.  相似文献   

4.
Properties of the helix-destabilizing protein from Lilium meiotic cells, 'R-protein', have been examined after treating it either with alkaline phosphatase or with two types of protein kinase. Dephosphorylation with the phosphatase increases binding capacity for single-strand DNA, but abolishes specificity of binding. Dephosphorylated R-protein binds equally to single and double-strand DNA. The capacity to facilitate denaturation or renaturation of DNA is also abolished by the treatment, but cooperativity characteristics are unaffected. The consequences of protein kinase treatment of native or dephosphorylated R-protein depend upon the origin of the kinase. Heterologous cyclic-AMP-dependent protein kinase cannot reverse the effects of dephosphorylation. However, it abolishes the binding affinity of either native or dephosphorylated R-protein for DNA. A protein kinase isolated from meiotic cells has no effect on the native protein, but it does restore all native properties tested to the dephosphorylated form after phosphorylating approximately two residues/molecule of protein.  相似文献   

5.
Prostatic binding protein (PBP) is a quantitatively important steroid-binding protein present in rat ventral prostate. Electrophoresis on SDS-containing polyacrylamide gels shows that PBP is composed of two subunits, F and S having molecular weights of 16,000 and 18,000. Upon reduction these subunits dissociate further into smaller components. Translation of mRNA from rat ventral prostate in a wheat germ cell-free system or in Xenopus oocytes results in the formation of polypeptides immunoprecipitable with an anti-PBP antiserum. However, as opposed to the wheat germ system, only the oocytes synthesize polypeptides, that are electrophoretically identical to those of native cytosolic PBP.  相似文献   

6.
Glucocorticoid receptor in rat liver cytosol is inactivated (rendered unable to bind steroid) by incubation with calf intestine alkaline phosphatase or highly purified rabbit muscle phosphoprotein phosphatase (phosphorylase phosphate, protein phosphatase C). The receptor is inactivated by both enzymes even when 10 mM sodium molybdate is present. Receptors that are inactivated by phosphatases in the presence of molybdate can be reactivated to the steroid-binding state by addition of dithiothreitol, but receptors that are inactivated in the absence of molybdate cannot be reactivated. These observations suggest that dephosphorylation leads to oxidation of a moiety (-SH) on the receptor that is required for steroid binding. Molybdate apparently preserves the receptor in a form such that reduction returns the receptor to the steroid binding state. We would propose that molybdate may act by complexing with sulfur groups on the receptor.  相似文献   

7.
The phospholipase A2 inhibitory activity of a 38 kDa K+-sensitive actin gelation factor in a murine leukemia cell line (M1) was examined. A specific antibody against 38 kDa protein was found to cross-react with 37 kDa protein (lipocortin) in rat peritoneal exudates. Although the native 38 kDa protein from M1 cells did not block phospholipase A2 activity, pretreatment with alkaline phosphatase produced a form that did inhibit this enzyme. However, a purified 38 kDa protein from differentiated M1 cells blocked phospholipase A2 activity without pretreatment with alkaline phosphatase. Phospholipase A2 inhibitory activity of the 38 kDa protein was not altered by addition of actin. These findings suggest that the phospholipase A2 inhibitory of our 38 kDa protein was induced during differentiation. We also proposed that our 38 kDa protein has the same epitope as lipocortin.  相似文献   

8.
Using L cell glucocorticoid receptors that have been immunopurified by adsorption to protein A Sepharose with a monoclonal antireceptor antibody, we have developed an assay to study the requirements for maintenance of steroid-binding capacity. After rapid purification by immunoadsorption, heteromeric receptor complexes retain the ability to bind glucocorticoid hormone. When the receptor complexes are warmed at 20 degrees C, steroid-binding capacity is lost, and the 90-kDa heat shock protein (hsp90) dissociates from the receptor. The rates of both temperature- and salt-dependent dissociation of hsp90 parallel the rates of loss of hormone-binding activity. Molybdate and hydrogen peroxide stabilize the hsp90-receptor complex against temperature-dependent dissociation. Molybdate, however, is much more effective in stabilizing steroid-binding capacity than peroxide. Receptors that have been inactivated in the absence of molybdate or peroxide cannot be reactivated. Inactivation of steroid-binding capacity occurs in the presence or absence of reducing agent, and inactivation is not accompanied by receptor cleavage or dephosphorylation. Under no conditions does an hsp90-free receptor bind steroid. Receptor bound to hsp90 can be cleaved to the 27-kDa meroreceptor in the presence of molybdate with retention of both hsp90 and steroid-binding activity. These observations lead us to propose that hsp90 is necessary but not sufficient for maintaining a competent high affinity glucocorticoid-binding site. Although the 27-kDa meroreceptor fragment is not itself sufficient for a competent binding site, it is sufficient when it is associated with hsp90.  相似文献   

9.
The isolated brush border membrane of the tapeworm, Hymenolepis diminuta, hydrolyzes p-nitrophenyl phosphate over a broad pH range. Acid phosphatase activity (pH optimum at 4.0) is inhibited specifically by sodium dodecyl sulfate (SDS) and NaF, while the alkaline phosphatase activity (pH optimum at 8.8) is inhibited specifically by levamisole, 2-mercaptoethanol, and ethylenediaminetetra-acetate (EDTA). These two phosphatase activities are further differentiated in that (1) there is a rapid decrease in alkaline phosphatase activity when the membrane preparation is incubated at pH 4.0, while there is little loss of acid phosphatase activity, and (2) the alkaline phosphatase activity is solubilized with no loss of activity when the membrane is treated with Triton X-100, while such treatment causes a significant loss of acid phosphatase activity. Both activities are nonspecific and hydrolyze a variety of phosphorylated compounds, but the relative activities of the two phosphatases against these substrates vary significantly.  相似文献   

10.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

11.
The major active protein phosphatase present in a rabbit skeletal muscle extract is associated with the glycogen particle and migrates in sucrose density gradient centrifugation as a Mr = 70,000 protein and contains modulator activity. Addition of extra modulator protein causes a time- and concentration-dependent conversion of the enzyme to an inactive FA-ATP, Mg-dependent form. The intrinsic modulator in the active phosphatase is destroyed by limited proteolysis without an appreciable change in the phosphatase activity. The proteolyzed active enzyme has a lower molecular weight (Mr = 40,000) and it reassociates with the modulator producing a FA-ATP, Mg-dependent enzyme form (Mr = 60,000). The modulator protein is used stoichiometrically in the activation of the ATP, Mg-dependent phosphatase. This is in agreement with the presence of one unit of modulator activity per unit of native spontaneously active phosphatase.  相似文献   

12.
A constitutive estrogen-binding protein (EBP) has been identified in the cytosol of Pseudomonas aeruginosa, a Gram-negative bacterium. All 14 strains tested contained the EBP. Estradiol binding was rapid and maximal binding occurred by 90 min at 0 degrees C. Dissociation of estradiol from the binding protein occurred at a rate of 4.6 fmol/min with a t1/2 of 42 min. EBP binding was destroyed by protease treatment and at high temperature. Sodium molybdate had no effect on binding. The Kd determined by Scatchard analysis was 3.9 nM and the Bmax was 323 fmol/mg protein. The EBP sedimented at 8.9 S on sucrose density gradients. The presence of 0.4 M KCl increased estradiol binding 6-fold but did not cause a shift in the sedimentation value. Gel filtration of the native protein gave an estimated molecular weight of 215,000 and a Stokes radius of 50.2 A. Steroid binding specificity, in order of decreasing affinity, was estradiol, estrone, dihydrotestosterone, estriol, testosterone, progesterone and promegestone. Other steroid hormones tested did not compete for estradiol binding. Identification of an EBP in a bacterium allows a comparative analysis of other steroid-binding proteins in unicellular microorganisms.  相似文献   

13.
The additional penicillin-binding protein (PBP) 2' that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been purified by affinity chromatography using monoclonal antibodies. Monoclonal antibody 1/423.10.351 reacted in ELISA with detergent extracts of membranes from resistant organisms, but not in immunoblots with PBP 2' separated by SDS-PAGE. Immunoprecipitation experiments showed that antibody 1/423.10.351 reacted with PBP 2' in detergent extracts. The latter antibody, covalently coupled to protein A-Sepharose through the Fc region, served as an affinity matrix to purify PBP 2'. The PBP was detected in immunoblots using a second monoclonal antibody, 2/401.43. Conjugation of this antibody with alkaline phosphatase afforded more rapid detection of PBP 2' for the immunological detection of PBP 2' both in affinity-purified fractions and in resistant strains.  相似文献   

14.
Methicillin-resistant Staphylococcus aureus (MRSA) is a global scourge, and treatment options are becoming limited. The MRSA phenotype reverts to that of beta-lactam-sensitive S. aureus when bacteria are grown at pH 5.0 in broth and, more importantly from a medical perspective (protracted, relapsing infections), after phagocytosis by macrophages, where the bacteria thrive in the acidic environment of phagolysosomes. The central factor for the MRSA phenotype is the function of the penicillin-binding protein (PBP) 2a, which maintains transpeptidase activity while being poorly inhibited by beta-lactams because of a closed conformation of its active site. We document herein by binding, acylation/deacylation kinetics, and circular dichroism spectroscopy with purified PBP 2a that at acidic pH (i) beta-lactams interact with PBP 2a more avidly; (ii) the non-covalent pre-acylation complex exhibits a lower dissociation constant and an increased rate of acyl-enzyme formation (first-order rate constant) without change in hydrolytic deacylation rate; and (iii) PBP 2a undergoes a conformational change in the presence of the antibiotic consistent with the opening of the active site from the closed conformation. These observations argue that PBP 2a most likely evolved for its physiological function at pH 7 or higher by adopting a closed conformation, which is not maintained at acidic pH. Although at the organism level the effect of acidic pH on other biological processes in MRSA could not be discounted, our report should provide the impetus for closer examination of the properties of PBP 2a at low pH and thereby identifying novel points of intervention in combating this problematic organism.  相似文献   

15.
Using a modified charcoal method, we could detect a steroid-binding component in rat lung cytosol which specifically binds R5020, progesterone, and some of its natural derivatives. The concentration of binding sites is high (30–40 pmol/mg protein), the affinity is moderate, the Kd of the R5020 complex being 10−7 M. Proteolytic enzymes and sulfhydryl reagents destroyed the binding sites indicating the protein nature and the requirement for disulfide bonds. The protein sedimented in the 2 S range thus had an Mr of 10 000–15 000. Further characteristics are the extreme heat (30 min at 100°C) and acid (pH 1) stability. These properties and the fact that it was not detected in serum, distinguish this binding protein from receptors and specific serum steroid binders.  相似文献   

16.
Glucose-stimulated and pancreatic islet beta cell-specific expression of the insulin gene is mediated in part by the C1 DNA-element binding complex, termed RIPE3b1. In this report, we define the molecular weight range of the protein(s) that compose this beta cell-enriched activator complex and show that protein phosphatase treatment inhibits RIPE3b1 DNA binding activity. Fractionation of beta cell nuclear extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that RIPE3b1 binding was mediated by a protein(s) within the 37-49-kDa ranges. Direct analysis of the proteins within the RIPE3b1 complex by ultraviolet light cross-linking analysis identified three binding species of approximately 51, 45, and 38 kDa. Incubating beta cell nuclear extracts with either calf alkaline phosphatase or a rat brain phosphatase preparation dramatically reduced RIPE3b1 DNA complex formation. Phosphatase inhibition of RIPE3b1 binding was prevented by sodium pyrophosphate, a general phosphatase inhibitor. We discuss how changes in the phosphorylation status of the RIPE3b1 activator may influence its DNA binding activity.  相似文献   

17.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

18.
Complete dissociation of dimeric plasma sex steroid-binding protein (SBP or SHBG) was obtained in 6 M urea at 10 degrees C. Removal of urea resulted in the refolding of monomers, followed by reformation of dimeric SBP, which migrates with the same mobility as the native protein. Dimerization does not require Ca+2 or steroid. Renatured monomers yield dimers with dissociation constants for 5 alpha-dihydrotesterone (DHT) and 17 beta-estradiol (E2) indistinguishable from those of native human SBP. This phenomenon was also demonstrated by mixing human and rabbit SBPs that, upon renaturation, form a hybrid dimer composed of one human subunit and one rabbit subunit. The hybrid binds both DHT and E2 in contrast to rSBP, which only binds the androgen. Therefore, we conclude that (1) docking of the two subunits creates an asymmetric steroid-binding site located at the interface between the subunits, and (2) only one face of the dimer defines the specificity for binding E2 by encompassing portion of a structural motif that recognizes the flat ring A of E2. The remaining portion, which recognizes the saturated ring A of DHT, is shared by both faces of the dimer. Because native monomers do not exist alone, the often-asked question of whether the SBP monomer binds steroid can be considered meaningless; steroid-binding activity is expressed only in the dimeric state. Finally, formation of the hybrid indicates that SBP dimerization represents a conserved event during the molecular evolution of SBP, suggesting that the structural elements responsible for dimerization will be homologous in SBPs from other species.  相似文献   

19.
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize. The recombinant precursor of this protein, pre-EF-Tu, has been found to exhibit chaperone activity and protect heat-labile proteins, such as citrate synthase and malate dehydrogenase, from thermal aggregation. Chloroplast EF-Tu is highly conserved and it is possible that the chaperone activity of this protein is not species-specific. In this study, we investigated the effect of native wheat pre-EF-Tu on thermal aggregation of rubisco activase. Additionally, we investigated the effect of native and recombinant maize pre-EF-Tu on activase aggregation. Activase was chosen because it displays an exceptional sensitivity to thermal aggregation and constrains photosynthesis at high temperature. The native precursors of both wheat and maize EF-Tu displayed chaperone activity, as shown by the capacity of both proteins to reduce thermal aggregation of rubisco activase in vitro. Similarly, the recombinant maize pre-EF-Tu protected activase from thermal aggregation. This is the first report on chaperone activity of native pre-EF-Tu and the first evidence for thermal protection of a photosynthetic enzyme by this putative chaperone. The results are consistent with the hypothesis that chloroplast EF-Tu plays a functional role in heat tolerance by acting as a molecular chaperone.  相似文献   

20.
Sex steroid-binding protein receptor was detected on membranes prepared from human premenopausal endometrium. The binding of sex steroid-binding protein to membranes was specific, saturable, and high affinity. Scatchard analysis showed the presence of two binding sites at different affinities. The addition of estradiol (10(-8) M) did not produce any inhibition of binding; indeed, it resulted in a modification of binding characteristics. The demonstration of sex steroid-binding protein receptor on membranes of human premenopausal endometrium indicates that the expression of receptor on membranes is not an effect of estrogen over stimulation on target tissues. Estradiol could act as a modulating factor of the binding, probably reflecting the sensitivity of tissues to different steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号