首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Phreatamoeba balamuthi is a free-living heterotrophic amoeba that lacks mitochondria. Metabolites of axenically-grown cells were characterized by natural-abundance 13C-NMR and 31P-NMR spectroscopy on acellular perchloric acid extracts. The amoebae were found to contain glycogen and trehalose as storage carbohydrates, together with putrescine and several amino acids, most prominently proline; we propose that proline and trehalose may serve in osmoregulation. Glycerophosphocholine and glycerophosphoethanolamine were present with their phosphomonoester derivatives, phosphocholine and phosphoethanolamine. Along with inorganic phosphate, inorganic pyrophosphate, nucleoside diphosphates, nucleoside triphosphates and NAD, P. balamuthi amoebae also contained unusual phosphoinositol diphosphates in large quantities (0.5 μmol/g wet cells).  相似文献   

2.
Amoebae and spores of the cellular slime mold Dictyostelium discoideum have been investigated by natural-abundance proton-decoupled 13C-NMR spectroscopy. Axenically grown vegetative amoebae have been found to contain, as prominent metabolites, the polyamines 1,3-diaminopropane (3.2 mM), putrescine (9.4 mM) and spermidine (1.7 mM). We also detected lactic acid (4.4 mM) and the following amino acids as free metabolites in concentrations ranging over 1-3 mM: glycine, alanine, glutamine and glutamate. The glycogen level is highly dependent upon growth state, being below the level of NMR detection in early-exponential cells and reaching about 110 mM glucose equivalents in plateau-phase cells. Dormant spores contained high amounts of trehalose (50 mM), glutamine (73 mM) and glutamate (20 mM). The latter two compounds were not reported previously to be present in such high concentrations in Dictyostelium spores. Germination induced by heat-shock activation was monitored by 13C NMR. No change in the major components occurred during the activation step. The progressive disappearance of trehalose during germination correlated with the decrease of glutamine and glutamate. In general, the data suggest that germinated spores contain a composition of free metabolites very similar to that of starved vegetative amoebae.  相似文献   

3.
The induction of microcyst formation could be triggered in washed amoebae of the cellular slime mold Polysphondylium pallidum (strain-2) by the addition of 2 mM ethionine. Methionine at a ratio of 2: 1 with ethionine would inhibit microcyst induction by ethionine. The involvement of polyamines in morphogenesis was also shown. Putrescine (0.02 to 0.1 M) induced the formation of microcysts, whereas spermidine (2 to 4 mM) was capable of causing a fourfold reduction in 0.05 M putrescine-induced microcysts but incapable of inhibiting microcyst induction by 0.08 M itrescine. Glycerol (0.5 M or 0.4 mM) was also found to be an effective inducer of microcysts.  相似文献   

4.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30 degrees C in a standard pyrophosphate medium containing 4.5 10(7) cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-D-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 +/- 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In vitro packaging of bacteriophage T7 DNA requires ATP.   总被引:1,自引:1,他引:0       下载免费PDF全文
Removal of nucleoside triphosphates from extracts prepared from bacteriophage T7-infected Escherichia coli results in a stringent requirement for added ATP to form infective phage particles by in vitro packaging of bacteriophage T7 DNA. Optimal packaging efficiency was achieved at a concentration of about 1.25 mM. Other nucleoside triphosphates could be substituted for ATP, but none of the common nucleoside triphosphates was as effective as ATP in promoting in vitro encapsulation.  相似文献   

6.
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.  相似文献   

7.
Spectral changes in human hepatic tumours and possible systemic effects of tumour on host liver were assessed by 31P amnd 1H in vitro NMR spectroscopy. The 1H and 31P spectra from liver tumour biopsies showed significant elevation in phosphoethanolamine, phosphocholine, taurine, citrate, alanine, lactate and glycine, and significant reduction in GPE (glycerophosphoethanolamine), GPC (glycerophosphocholine), creatine and threonine compared to histologically normal tissue. 31P-NMR spectra obtained from histologically normal tissue within tumour-bearing livers showed significant elevation in phosphoethanolamine and phosphocholine compared to data from liver biopsies from nontumour-bearing patients (pancreatitis). These results suggest that alterations in membrane metabolism in host liver can be detected by 31P-NMR.  相似文献   

8.
The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinites.  相似文献   

9.
Acid nucleoside triphosphatase (Acid NTPase), an enzyme which catalyzes the hydrolysis of all nucleoside triphosphates to the corresponding diphosphates was purified from human serum with a purification factor of 190 and a recovery of 31%. The molecular weight was 75,000 as estimated by gel filtration. Gel-electrophoresis revealed an Rf-value of 0.11, and the isoelectric point was determined at pH 4.4. It exhibited a temperature optimum of 44 degrees C and the activation energy was estimated to be 41.6 kJ/mol. The enzyme was active in the absence of divalent cations, since activity was not inhibited by EDTA. The presence of this chelator reduced the Km-value from 70 to 40 microM. Inhibitor experiments revealed that tartrate was a weak mixed-type noncompetitive inhibitor, Ki = 88 mM. The enzyme was specific for the hydrolysis of nucleoside triphosphates. P-nitrophenyl phosphate was not accepted as a substrate. The enzyme revealed optimum activity at the exceptionally acid pH of 3.0. These unique characteristics indicate the presence of a novel enzyme.  相似文献   

10.
P M Kilby  J L Allis  G K Radda 《FEBS letters》1990,272(1-2):163-165
The phosphodiester peak in 31P nuclear magnetic resonance spectra of human brain in vivo is often the most prominent feature of the spectrum. We have demonstrated that this resonance exhibits bi-exponential spin-spin relaxation, giving relaxation times of 2 and 10 ms. We interpret this in terms of the two components which make up the peak, bilayer lipids and the small cytosolic phosphates glycerophosphoethanolamine and glycerophosphocholine. Using the relaxation times and the relative peak heights of the two components we have also been able to quantitate the concentration of the bilayer lipids as 20-40 times that of ATP.  相似文献   

11.
The levels of intermediates of aerobic and anaerobic glycolysis were determined in perchloric acid extracts prepared from glycolyzing suspensions of Saccharomyces cerevisiae by 31P and 13C NMR spectroscopy. From 31P NMR measurements a small increase in the level of nucleoside triphosphates was found in derepressed cells upon oxygenation, while the ratio of nucleoside diphosphates to nucleoside triphosphates was a factor of 3 lower aerobically. Combined with the previous observation that the level of intracellular Pi is lower by a factor of 3 aerobically, this leads to the conclusion that the phosphate potential [NTP]/([NDP][Pi]) is lower by an order of magnitude during anaerobic glycolysis than during aerobic glycolysis. There was no correlation between the level of glucose 6-phosphate and the rate of glucose utilization. We used 13C NMR to determine the scrambling of the 13C label from C1 to C6 in fructose 1,6-bisphosphate (Fru-P2). There was more scrambling of the label during aerobic than during anaerobic glycolysis. Since the level of Fru-P2 did not change much upon oxygenation, this suggests that in aerobic glycolysis there is control of at least one enzyme in the lower part of the Embden-Meyerhof-Parnas pathway, below Fru-P2, which gives the 13C level more time to equilibrate between C1 and C6 of Fru-P2. Previous 13C NMR measurements of glucose utilization rates had shown a 2-fold reduction upon oxygenation, reflecting control in the early stages of the pathway.  相似文献   

12.
Absence of 5'' terminal capping in encephalomyocarditis virus RNA.   总被引:9,自引:2,他引:7       下载免费PDF全文
D Frisby  M Eaton    P Fellner 《Nucleic acids research》1976,3(10):2771-2787
The nature of the 5' terminus of encephalomyocarditis (EMC) virion RNA has been investigated. We have failed to detect any capped products or nucleoside polyphosphates arising upon complete digestion of the RNA with T1, T2, and pancreatic ribonucleases, and it would therefore appear that the 5' terminus of EMC virus RNA is not phosphorylated and not capped with m7G. EMC virions do contain, however, large amounts of all four 5'-monosubstituted nucleoside triphosphates (4.2M pppG; 16.4M pppA; 3.OM pppU and 2.5M pppC), of which at least a proportion (about 15-20%) appear to remain bound to fully denatured RNA in the presence of divalent cations.  相似文献   

13.
The DHH superfamily human protein h-prune, a binding partner of the metastasis suppressor nm23-H1, is frequently overexpressed in metastatic cancers. From an evolutionary perspective, h-prune is very close to eukaryotic exopolyphosphatases. Here, we show for the first time that h-prune efficiently hydrolyzes short-chain polyphosphates (k cat of 3-40 s (-1)), including inorganic tripoly- and tetrapolyphosphates and nucleoside 5'-tetraphosphates. Long-chain inorganic polyphosphates (>or=25 phosphate residues) are converted more slowly, whereas pyrophosphate and nucleoside triphosphates are not hydrolyzed. The reaction requires a divalent metal cofactor, such as Mg (2+), Co (2+), or Mn (2+), which activates both the enzyme and substrate. Notably, the exopolyphosphatase activity of h-prune is suppressed by nm23-H1, long-chain polyphosphates and pyrophosphate, which may be potential physiological regulators. Nucleoside triphosphates, diadenosine hexaphosphate, cAMP, and dipyridamole (inhibitor of phosphodiesterase) do not affect this activity. Mutation of seven single residues corresponding to those found in the active site of yeast exopolyphosphatase led to a severe decrease in h-prune activity, whereas one variant enzyme exhibited enhanced activity. Our results collectively suggest that prune is the missing exopolyphosphatase in animals and support the hypothesis that the metastatic effects of h-prune are modulated by inorganic polyphosphates, which are increasingly recognized as critical regulators in cells.  相似文献   

14.
Alkylsufatase induction in resting cell suspensions of P. aeruginosa was inhibited by exogenously supplied adenosine or by ATP (2mM). Adenine phosphate had no effect while AMP or ADP caused a slight stimulation of induction. The inhibitory effect of ATP required the presence of added Mg2+, was not reversed by cyclic-AMP (2mM), and was independent of the nature of the inducer. Of a number of other nucleoside triphosphates tested, only UTP (2mM) acted as an inhibitor of induction. These nucleotides at external concentrations of 6mM also inhibited alkysulfatase induction in actively growing cells.  相似文献   

15.
We used 31P-NMR spectroscopy to investigate the response of living C6 glioma cells to stimulation by a beta-adrenergic agonist, isoproterenol. In the presence of 3-isobutyl-1-methylxanthine, stimulation induced an accumulation of cAMP, making possible the NMR detection of the second messenger in living cells grown on microcarrier beads and perfused in the NMR tube. The cAMP signal rose to a maximum level within 20-25 min of stimulation; thereafter it decreased to the detection threshold within 60 min. At the same time, 40% increases of phosphomonoester and diphosphodiester signals were observed, whereas no significant change in phosphocreatine and nucleotide signals was detected. The kinetics of changes of the cellular content in phosphorylated metabolites were analyzed after recording 31P-NMR spectra of cell perchloric acid extracts as a function of time of stimulation. cAMP accumulation in stimulated cells was evidenced by a near linear increase of its NMR signal as a function of incubation time (from 0 to 60 min). Concomitantly with the production of cAMP, the data showed 30% decreases of phosphocreatine and ATP levels within 60 min of stimulation, and an unexpected redistribution of pyrimidine and purine nucleoside triphosphates. At the same time, levels of phosphomonoesters (phosphorylcholine and phosphorylethanolamine) and phosphodiesters (glycerophosphorylcholine and glycerophosphorylethanolamine) rose (50% increase). 13C-NMR spectra of cell perchloric acid extracts prepared after isoproterenol stimulation of cells incubated in the presence of [1-13C]glucose indicated a higher glucose content in stimulated cells, whereas the resonance of ribose C1 was diminished. Moreover, the resonances of C1 of ethanolamine and choline (and their derivatives) were increased in spectra of stimulated cells, whereas that of C3 of serine was decreased. In addition, the 13C-NMR data indicated that neither the pattern of glutamate carbon enrichment nor the glutamate/glutamine ratio was modified in stimulated cells. On the other hand, the heteronuclear coupling pattern of the lactate (methyl group) resonance in 1H-NMR spectra of cell incubation media indicated that no change occurred in the carbon flux through the pentose-phosphate shunt under stimulation. The results of this multinuclear NMR approach are discussed in terms of metabolic responses of C6 cells to beta-adrenergic stimulation and cAMP overproduction.  相似文献   

16.
Spores of all strains of Dictyostelium discoideum tested in this study germinated after a heat shock of 45 C for 30 min. Whereas the strains differed in their rates of germination, the rate for each strain was constant. A correlation existed between the rate of germination and the rate of vegetative growth when spores were inoculated into bacterial streaks. Heat shock clearly increased spore germination in D. purpureum, but the response was less dramatic than in D. discoideum. Enhancement also occurred in D. rosarium, but only in media containing peptone. Strains of D. mucoroides gave varied responses, and these could be divided into those which required mutrients for spore germination and those which did not. The spores of Polysphondylium pallidum were resistant to mild heat (45 C), but were not activated; peptone was required for germination. In contrast, the microcysts of this species were heat-labile and required no added nutrients for excystment.  相似文献   

17.
Morpholino nucleoside triphosphates (A, U, G, C, T) bearing the active functional amino group tethered to morpholine residue and their fluorescently labeled derivatives were synthesized. All compounds were characterized by 1H, 13C, and 31P NMR, and mass spectrometry. A possibility of using fluorescently labeled morpholino nucleoside triphosphates as chain terminators in DNA sequencing is discussed.  相似文献   

18.
Activity of purified protocollagen proline hydroxylase was enhanced several fold by addition of nucleoside triphosphates (3 mM) to the assay medium, but nucleoside mono-and diphosphates were almost inactive. Pyrimidine nucleotides were less effective compared with purine nucleotides, among which GTP was the most effective. dATP and ATP analogues such as adenosine 5′-(β,γ-imino) triphosphate (AMP-PNP), adenosine 5′-(β,γ-methylene) triphosphate (AMP-PCP), etc. were inactive. ATP or GTP showed no additive effect on enzyme activity stimulated by dithiothreitol or bovine serum albumin.  相似文献   

19.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30°C in a standard pyrophosphate medium containing 4.5 107 cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-d-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 ± 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG. The reasons why DG6P cannot accumulate indefinitely in cells are discussed, together with the reasons why the consumption of DG, but not glucose, becomes negligible after 30 min of incubation. In the absence of DG, the amount of polyphosphates (polyP) increased regularly with time as long as glucose was sufficiently present (≥ 5 mM) in the suspension. When glucose was exhausted, long chain polyphosphates disappeared to give rise, at first, to polyP with shorter chains and finally to inorganic phosphate. In the presence of 5 mM DG, the reduction in quantity of polyP can be explained by the fact that ATP, normally used for the polyP synthesis, is now diverted to phosphorylation of DG to DG6P. The presence of 5 mM DG also had significant effects on the glutamate C2, C3 and C4 signal intensity and the production of all aminoacids. The results seem to indicate that the enzymes involved in the Krebs cycle are also affected by the presence of DG.  相似文献   

20.
Budniak A  O'Day DH 《Protist》2011,162(3):490-502
High osmolarity causes amoebae of the cellular slime mould Polysphondylium pallidum to individually encyst, forming microcysts. During microcyst differentiation, actin is tyrosine phosphorylated. Tyrosine phosphorylation of actin is independent of encystment conditions and occurs during the final stages of microcyst formation. During microcyst germination, actin undergoes dephosphorylation prior to amoebal emergence. Renewed phosphorylation of actin in germinating microcysts can be triggered by increasing the osmolarity of the medium which inhibits emergence. Immunofluorescence reveals that actin is dispersed throughout the cytoplasm in dormant microcysts. Following the onset of germination, actin is observed around vesicles where it co-localizes with phosphotyrosine. Prior to emergence, actin localizes to patches near the cell surface. Increasing osmolarity disrupts this localization and causes actin to redistribute throughout the cytoplasm, a situation similar to that observed in dormant microcysts. The tyrosine phosphorylation state of actin does not appear to influence the long-term viability of dormant microcysts. Together, these results indicate an association between actin tyrosine phosphorylation, organization of the actin cytoskeleton, and microcyst dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号