共查询到20条相似文献,搜索用时 0 毫秒
1.
It is believed that suppression of the processes by which prostaglandin F2 alpha is released from the uterus during the estrous cycle is vital to maintenance of pregnancies in guinea-pigs. Prostaglandin F2 alpha was injected into pregnant guinea-pig at four different stages of gestation to investigate the effect increased prostaglandin might have. The study revealed an alteration in the sensitivity of the pregnancy to prostaglandin F2 alpha as pregnancy progressed. Recovery from the prostaglandin insult was more likely if the injection was given after Day 24 than before Day 18. In some animals the serum progesterone levels fell following the injection and then subsequently recovered. It appears that effects which are potentially hazardous to the pregnancy are countered in a variety of ways. 相似文献
2.
Effect of prostaglandin F2alpha on length of diestrus in mares 总被引:2,自引:0,他引:2
3.
4.
R H Douglas O J Ginther 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1975,148(1):263-269
Nine groups of pony mares (3/group) were used in a 3 times 3 factorial experiment. The factors were dose of PGF-2 alpha (0, 0.25 of 1.25 mg and route of administration (im, iu or il). Mares were laparotomized and treated on day 7 postovulation. Jugular blood was collected for progesterone RIA at 0 (pretreatment) and 1,6,12,24,48, and 72 hr posttreatment. In mares given either 0.25 mg or 1.25 mg PGF-2alpha, progesterone concentrations were not significantly different among the three routes at any of the posttreatment times studied except at 6 hr posttreatment. In mares given 0.25 mg, progesterone concentrations at 6 hr was less (p less than 0.05) for mares injected im than for mares injected iu. Compared to pretreatment progesterone values, PGF2-alpha (0.25 mg and 1.25 mg groups combined) administration significantly decreased progesterone concentration by 12 hr posttreatment in mares injected im and 24 hr in mares injected iu or il. In the iu group, a significant increase in progesterone concentration occurred between 1 and 6 hr followed by a significant decrease at 12 hr posttreatment. There were no significant differences among the three routes for intervals from treatment to estrus or ovulation, length of posttreatment estrus or length of interovulatory interval. Injection of either 0.25 mg or 1.25 mg PGF-2alpha significantly shortened the interval from treatment to estrus. Although 0.25 mg tended to shorten the interval from treatment to ovulation and interovulatory interval, these two end points were significantly shortened only in mares given 1.25 mg PGF-2alpha. Results indicated that local administration (iu or il) did not improve the luteolytic efficacy of PGF-2alpha over systemic administration (im). 相似文献
5.
M H Troedsson M M Ababneh A F Ohlgren S Madill N Vetscher M Gregas 《Theriogenology》2001,55(9):1891-1899
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy. 相似文献
6.
Horses are about five times more sensitive to the luteolytic effect of prostaglandin F2alpha (PGF) than cattle, as indicated by a recommended clinical dose of 5 mg in horses and 25 mg in cattle. Novel evaluations of the PGF plasma disappearance curves were made in mares and in heifers, and the two species were compared. Mares and heifers (n = 5) of similar body weight were injected (Min 0) intravenously with PGF (5 mg per animal). Blood was sampled every 10 sec until Min 3, every 30 sec until Min 5, every 10 min until Min 60, and every 30 min until Min 240. The mean PGF concentration was greater (P < 0.05) in mares than in heifers at Min 1 through Min 60 and at Mins 180 and 240. The mean time to maximum PGF concentration was not different between mares (42.0 ± 8.6 sec) and heifers (35.0 ± 2.9 sec). The apparent plasma clearance, distribution half-life, elimination half-life, and maximum plasma PGF concentration were 3.3 ± 0.5 L h(-1) kg(-1), 94.2 ± 15.9 sec, 25.9 ± 5.0 min, and 249.1 ± 36.8 ng/ml, respectively, in mares and 15.4 ± 2.3 L h(-1) kg(-1), 29.2 ± 3.9 sec, 9.0 ± 0.9 min, and 51.4 ± 22.6 ng/ml, respectively, in heifers. Plasma clearance was about five times less (P < 0.0005), maximum plasma PGF concentration was five times greater (P < 0.002), and the distribution half-life and elimination half-life were about three times longer (P < 0.005) in mares than in heifers. The fivefold greater plasma clearance of PGF in heifers than in mares corresponds to the recommended fivefold greater clinical dose of PGF in cattle and supported the hypothesis that the metabolic clearance of PGF is slower in mares than heifers. 相似文献
7.
The effects of oxytocin, prostaglandin F2 alpha (PGF2 alpha), and clenbuterol on uterine contractility and tone during anestrus and diestrus, and during mobility and postfixation of the embryonic vesicle were studied in 51 pony mares. Contractility was assessed by scoring real-time ultrasound images, and tone was assessed by transrectal digital compression. Scoring was done by an operator who had no knowledge of treatment assignments. In anovulatory mares primed with progesterone for 16 d, oxytocin did not significantly alter contractility but did stimulate an increase in tone, whereas clenbuterol depressed both contractility and tone. The PGF2 alpha given on Days 12, 15, and 18 did not significantly alter uterine contractility in pregnant mares, but it increased contractility on all days in nonpregnant mares. Clenbuterol decreased both tone and contractility when given to pregnant mares on the day of embryonic-vesicle fixation, while it decreased tone but not contractility when given on Day 19. Clenbuterol treatment was associated with dislodgment of the fixed embryo in only 1 of 5 mares. However, on Day 19, clenbuterol treatment was associated with a change in shape of the conceptus when viewed in a cross section of the uterine horn. The conceptus shape became more circular rather than irregular or triangular, as indicated by a significant decrease in the variation in the distances between adjacent walls measured in 4 different directions. Results indicated that: 1) oxytocin increased uterine tone but did not alter contractility in progesterone-primed anestrous mares; 2) on Days 12, 15 and 18, PGF2 alpha increased uterine contractility in nonpregnant mares but not in pregnant mares; 3) clenbuterol decreased both tone and contractility at all reproductive states except for a lack of a decrease in contractility on Day 19 of pregnancy; and 4) reduction in uterine tone from clenbuterol treatment on Day 19 was associated with a change in the two-dimensional shape of the in situ conceptus from irregular to a more circular form. 相似文献
8.
9.
Effect of pregnancy on oxytocin-induced release of prostaglandin F2 alpha in heifers 总被引:2,自引:0,他引:2
The effect of pregnancy on the release of prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin (OT) has been examined. Fourteen cyclic heifers received one intravenous injection of 1 IU OT (n = 6) or 100 IU OT (n = 8) 17, 18, or 19 days (Day 17-19) after the onset of estrus (Day 0). Five of these animals also received 100 IU OT at Days 6 and 13 to determine the effect of OT at different times of the cycle. Frequent blood samples were taken for 60 min before and for 90 min after OT injection for the measurement of 15-keto-13,14-dihydro-PGF2 alpha (PGFM) by radioimmunoassay. The experiment was then repeated using the same animals at Day 17-19 of pregnancy (confirmed by the recovery of an embryo the day after OT injection). Following the injection of 1 IU OT, plasma PGFM reached its peak within 30 min with the increase significantly lower (P less than 0.05) in pregnant (1.13 +/- 0.10-fold) than in nonpregnant animals (2.07 +/- 0.27-fold). However, because only 3 of the 6 cyclic animals showed a response to 1 IU OT, the dose was increased to 100 IU in subsequent experiments. The animals that received 100 IU at Days 6 and 13 had no significant increase in PGFM concentrations (1.18 +/- 0.05-fold and 1.01 +/- 0.04-fold, respectively). At Day 17-19 the increase in plasma PGFM reached its peak 5-15 min after 100 IU OT and the increase was significantly greater in nonpregnant (3.23 +/- 0.17-fold) than in pregnant (1.21 +/- 0.02-fold; P = 0.003) heifers. Six of 11 animals injected at Day 17-19 of the cycle showed a decrease in progesterone (P4) the day after OT administration. These data show that the release of PGF2 alpha in response to OT is suppressed in pregnant animals in vivo, suggesting an antiluteolytic role for the embryo in luteostasis. 相似文献
10.
Archbald LF Risco C Chavatte P Constant S Tran T Klapstein E Elliot J 《Theriogenology》1993,40(4):873-884
A total of 329 cows was used in 2 experiments to study the effect of PGF2a given 8 or 24 h apart on the number of cows observed in estrus within 7 d and the pregnancy rate to a single insemination at this time. In Experiment 1, 233 cows were divided into 2 groups. Cows in Group 1 (n = 117) were treated twice with 25 mg, im of PGF2a (0 and 8 h) while cows in Group 2 (n = 116) were treated only once (0 h). In Experiment 2, 96 cows were divided into 2 groups. Cows in Group 1 (n = 49) were treated twice with 25 mg, im of PGF2a (0 and 24 h) while cows in Group 2 (n = 47) were treated only once (0 h). In Experiment 1, blood samples were obtained from cows in both groups on Days 0 and 2. However, in Experiment 2, blood samples were obtained from cows in both groups only on Day 0. Plasma progesterone concentration was determined using radioimmunoassay. Cows in both experiments were observed for estrus within 7 d of treatment and were inseminated within 12 h of the observed estrus. In Experiment 1, more cows in Group 1 were observed in estrus within 7 d than in Group 2 (P <0.03). In Experiment 2, there was no significant difference in the number of cows in both groups that were observed in estrus within 7 d. However, the interval from treatment to the first observed estrus for cows not observed in estrus within 7 d was significantly longer in cows treated at 0 and 24 h compared with the cows treated once at 0 h. In both experiments, the pregnancy rate for cows inseminated within 7 d was similar for cows in all groups. From the results of this study, it is concluded that treatment of dairy cows with 2 luteolytic dosages of PGF2a at an 8-h interval resulted in more cows being observed in estrus than at a 24-h interval. 相似文献
11.
12.
Peroxisomal chain-shortening of prostaglandin F2 alpha 总被引:2,自引:0,他引:2
We have recently reported that prostaglandin F2 alpha can be chain-shortened by isolated rat liver peroxisomes. In the present study it is further established by cell fractionation experiments that the enzymes involved in this reaction are localized to peroxisomes. Under the conditions employed, the highest activity was found in the light mitochondrial fraction. Further fractionation of the light mitochondrial fraction by sucrose density gradient centrifugation showed that the prostaglandin oxidation activity comigrated with peroxisomal marker enzymes. Di(2-ethylhexyl)phthalate treatment resulted in a tenfold increased capacity for the conversion of prostaglandin F2 alpha into tetranorprostaglandin F1 alpha. The reaction was not inhibited by KCN. The reaction was further characterized with respect to cofactor requirements. The prostaglandin oxidation was found to be completely dependent on NAD, CoA, ATP, Mg2+ and was stimulated by FAD. Incubation of prostaglandin E2 with peroxisomes resulted in conversion into several products. After alkaline hydrolysis, one of these was identified as tetranorprostaglandin B1. 相似文献
13.
F(2)-isoprostane and prostaglandin F(2 alpha)metabolite excretion rate and day to day variation in healthy humans. 总被引:2,自引:0,他引:2
Isoprostanes are mainly formed in vivo by a non-enzymatic free radical catalysed oxidation of arachidonic acid. Studies have indicated that a major isoprostane, 8-iso-PGF(2 alpha)in plasma and urine is a reliable biomarker of oxidative stress. Prostaglandins are formed by enzymatic oxidation of arachidonic acid catalysed by cyclooxygenase (COX). 15-Keto-dihydro-PGF(2 alpha), a major metabolite of prostaglandin F(2 alpha)in plasma, and also found in urine, is considered to be a useful biomarker of inflammation. To investigate the excretion pattern and day to day variation of 8-iso-PGF(2 alpha)and 15-keto-dihydro-PGF(2 alpha)in healthy individuals, morning urine samples were collected from 13 volunteers on 10 successive days. The samples were analysed for free 8-iso-PGF(2 alpha)and 15-keto-dihydro-PGF(2 alpha)by radioimmunoassay. The mean excretion rate of 8-iso-PGF(2 alpha)was 0.27+/-0.11 nmol/mmol creatinine (mean+/-SD, n=13) and the coefficient of variation was 42% during the 10 days. The mean excretion rate of 15-keto-dihydro-PGF(2 alpha)was 0.46+/-0.19 nmol/mmol creatinine, giving a coefficient of variation of 41%. The mean values of 8-iso-PGF(2 alpha)were significantly correlated with the mean values of 15-keto-dihydro-PGF(2 alpha)(r=0.68, P=0.01). In conclusion, day to day biological variation in urinary excretion rate of 8-iso-PGF(2 alpha)and 15-keto-dihydro-PGF(2 alpha)should be taken into account in evaluating a clinical study unless a large increase or decrease of these parameters has been obtained. 相似文献
14.
Liu X Dai Q Hart EJ Duggavathi R Barrett DM Rawlings NC Bartlewski PM 《Theriogenology》2006,66(4):811-821
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy. 相似文献
15.
16.
O P Sharma 《Journal of reproduction and fertility》1975,45(3):541-543
The concentrations of PGF-2alpha in the peripheral blood of five foaling mares were measured by radioimmunoassay. Low levels of PGF-2alpha were detected as early as 1 week before foaling in two of the mares. These levels increased steadily, reaching a peak (1-74 +/- 0-44 ng/ml) during fetal expulsion. A relatively high PGF-2alpha level was found in samples collected 60 min after foaling. 相似文献
17.
Michael T. Zavy Michael W. Vernon Richard L. Asquith Fuller W. Bazer Daniel C. Sharp 《Prostaglandins & other lipid mediators》1984,27(2):311-320
Two experiments were conducted to assess the effect of exogenous hormone treatment on uterine luminal prostaglandin F (PGF). In the first experiment ovariectomized pony mares received either corn oil (21 days, n = 3), estradiol valerate (21 days, n = 3), progesterone (21 days, n = 3) or estradiol valerate (7 days) followed by progesterone (14 days, n = 4). Progesterone treated mares had higher (P<.01) uterine luminal PGF compared with all other groups, and no differences were detected between other treatment comparisons. In Experiment II, uterine fluid was collected from 4 ovariectomized horse mares before and after treatment with estradiol valerate (7 days) followed by progesterone (50 days). Pretreatment uterine luminal PGF levels were lower (P<.001) than post-treatment levels (.03 vs 76.80 ng/ml). In a third experiment PGF was measured in uterine fluid of pony mares on days 8, 12, 14, 16, 18 and 20 of the estrous cycle and pregnancy. In nonpregnant mares a day effect P<.03) was observed in which uterine fluid PGF increased during the late luteal phase and declined thereafter. In contrast, no day effect was observed in pregnant animals and uterine luminal PGF was lower (P<.001) than in cycling animals. These studies indicate that exogenous progesterone administration results in a large increase in uterine luminal PGF, whereas, pregnancy results in suppression. Taken collectively with previous work from our laboratory, these results suggest that while the endometrium of pregnant mares is capable of producing large amounts of PGF, the presence of a conceptus impedes its synthesis and/or release which allows for luteal maintenance. 相似文献
18.
C N Hensby 《Prostaglandins》1974,8(5):369-375
19.
Five normal estrous cycling multiparous non-lactating Brahman cows were utilized to determine if pregnancy-specific protein B (PSPB) would alter prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE) synthesis/release by endometrial tissue. The uterine horn ipsilateral to the corpus luteum was excised on Day 16 of the estrous cycle. Endometrial tissue (200 mg wet wt) was cultured in Nutrient Mixture F-10 medium in a perifusion system. The tissue and medium were aerated with 95% O2: 5% CO2 and temperature was maintained at 39 degrees C. The medium flow rate was 100 microliters/min and fractions were collected at 20 min intervals. After a 120 min settling period, tissue culture continued with: 1) control (medium only); 2) 2 micrograms [Asu1,6]-oxytocin/ml medium for 1 h; 3) 4 or 8 micrograms PSPB/ml medium for 2 h; or 4) 4 or 8 micrograms PSPB/ml medium for 2 h plus 2 micrograms oxytocin/ml medium during the second h. Differences in PGF and PGE secretion rate were not found between 4 and 8 micrograms PSPB. Therefore, groups were combined and data were analyzed according to tissue not receiving PSPB (control); receiving PSPB and receiving PSPB plus oxytocin. A nonsignificant rise (p greater than 0.10) in PGF secretion was observed in response to PSPB and PSPB plus oxytocin above the control by the end of the perifusion period (263.7 +/- 41.7, 220.0 +/- 41.7 and 166.1 +/- 41.7 pg/(100 mg tissue/min), respectively). Treatment with PSPB alone elevated (p less than 0.05) PGE secretion rate above control by 100 and 160 min post-removal of PSPB treatment. Treatment with PSPB plus oxytocin elevated (p less than 0.05) PGE release above control by 20 min after starting oxytocin treatment and continued throughout the duration of the perifusion. Pregnancy-specific protein B plus oxytocin-induced PGE release was greater (p less than 0.05) than PSPB alone after initiating the oxytocin treatment until 20 min after removal of the treatments. However, no further differences between PSPB alone and PSPB plus oxytocin treatments were detected throughout the remainder of the perifusion period. It appears that PSPB tends to elevate PGF release and significantly elevates PGE release from Day 16 endometrial tissue. 相似文献
20.
The effects of oxytocin, prostaglandin F(2)alpha and a prostaglandin F(2)alpha analogue on uterine and vaginal pressures in the mare were measured using electronic catheter-tipped pressure transducers. Catheterisation for 70 minutes produced no significant change with time. Oxytocin caused a rapid rise in intrauterine pressure which had subsided 20 minutes later. Cloprostenol (prostaglandin F(2)alpha analogue) caused an increase in uterine pressure which started ten minutes after administration and lasted for the duration of the recording (60 minutes post-injection). Prostaglandin F(2)alpha produced a uterine pressure increase ten minutes after administration which declined over the next 40 minutes. The activity of the three drugs was not consistently affected by reproductive status (oestrus, dioestrus or anoestrus). There were no significant drug effects on intravaginal pressure. 相似文献