首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rectal gland of sharks contains a 13.2-kDa microsomal protein that in primary structure resembles to a variable extent the mammalian Cl- channel phospholemman. It appears to reside in basolateral as well as in apical membranes. The large variation in primary structure among different orders and families of sharks could make the protein a hallmark for classification.  相似文献   

2.
Phospholemman (PLM) or FXYD1 is a major cardiac myocyte phosphorylation target upon adrenergic stimulation. Prior immunoprecipitation and functional studies suggest that phospholemman associates with the Na/K-pump (NKA) and mediates adrenergic Na/K-pump regulation. Here, we tested whether the NKA-PLM interaction is close enough to allow fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent (CFP/YFP) fusion proteins of Na/K pump and phospholemman and whether phospholemman phosphorylation alters such FRET. Co-expressed NKA-CFP and PLM-YFP in HEK293 cells co-localized in the plasma membrane and exhibited robust FRET. Selective acceptor photobleach increased donor fluorescence (F(CFP)) by 21.5 +/- 4.1% (n = 13), an effect nearly abolished when co-expressing excess phospholemman lacking YFP. Activation of protein kinase C or A progressively and reversibly decreased FRET assessed by either the fluorescence ratio (F(YFP)/F(CFP)) or the enhancement of donor fluorescence after acceptor bleach. After protein kinase C activation, forskolin did not further reduce FRET, but after forskolin pretreatment, protein kinase C could still reduce FRET. This agreed with phospholemman phosphorylation measurements: by protein kinase C at both Ser-63 and Ser-68, but by protein kinase A only at Ser-68. Expression of PLM-YFP and PLM-CFP resulted in even stronger FRET than for NKA-PLM (F(CFP) increased by 37 +/- 1% upon YFP photobleach), and this FRET was enhanced by phospholemman phosphorylation, consistent with phospholemman multimerization. Co-expressed PLM-CFP and Na/Ca exchange-YFP were highly membrane co-localized, but FRET was undetectable. We conclude that phospholemman and Na/K-pump are in very close proximity (FRET occurs) and that phospholemman phosphorylation alters the interaction of Na/K-pump and phospholemman.  相似文献   

3.
Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 +/- 66 to 2,604 +/- 286 microeq x h(-1) x g(-1); the relative potency of peptide agonists was VIP > PHI = GHRH > PACAP > secretin, where PHI is peptide histidine isoleucine amide, GHRH is growth hormone-releasing hormone, and PACAP is pituitary adenylate cylase activating peptide. The cloned sVIP-R from shark rectal gland (SRG) is only 61% identical to the human VIP-R1. It maintains a long, extracellular NH2 terminus with seven cysteine residues, and has three N-glycosylation sites and eight other residues implicated in VIP binding. Two amino acids considered important for peptide binding in mammals are not present in the shark orthologue. When sVIP-R and the CFTR chloride channel were coexpressed in Xenopus oocytes, VIP increased chloride conductance from 11.3 +/- 2 to 127 +/- 34 microS. The agonist affinity for activating chloride conductance by the cloned receptor was VIP > GHRH = PHI > PACAP > secretin, a profile mirroring that in the perfused gland. The receptor differs from previously cloned VIP-Rs in having a low affinity for PACAP. Expression of both sVIP-R and CFTR mRNA was detected by quantitative PCR in shark rectal gland, intestine, and brain. These studies characterize a unique G protein-coupled receptor from the shark rectal gland that is the oldest cloned VIP-R.  相似文献   

4.
The Na,K-ATPase provides the driving force for many ion transport processes through control of Na(+) and K(+) concentration gradients across the plasma membranes of animal cells. It is composed of two subunits, alpha and beta. In many tissues, predominantly in kidney, it is associated with a small ancillary component, the gamma-subunit that plays a modulatory role. A novel 15-kDa protein, sharing considerable homology to the gamma-subunit and to phospholemman (PLM) was identified in purified Na,K-ATPase preparations from rectal glands of the shark Squalus acanthias, but was absent in pig kidney preparations. This PLM-like protein from shark (PLMS) was found to be a substrate for both PKA and PKC. Antibodies to the Na, K-ATPase alpha-subunit coimmunoprecipitated PLMS. Purified PLMS also coimmunoprecipitated with the alpha-subunit of pig kidney Na, K-ATPase, indicating specific association with different alpha-isoforms. Finally, PLMS and the alpha-subunit were expressed in stoichiometric amounts in rectal gland membrane preparations. Incubation of membrane bound Na,K-ATPase with non-solubilizing concentrations of C(12)E(8) resulted in functional dissociation of PLMS from Na,K-ATPase and increased the hydrolytic activity. The same effects were observed after PKC phosphorylation of Na,K-ATPase membrane preparations. Thus, PLMS may function as a modulator of shark Na,K-ATPase in a way resembling the phospholamban regulation of the Ca-ATPase.  相似文献   

5.
We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.  相似文献   

6.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

7.
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.  相似文献   

8.
In cartilaginous fish, two cDNAs encoding calcitonin-family receptors were isolated for the first time from the stingray brain. The open reading frame of one receptor cDNA coded a 525-amino acid protein. The amino acid identity of this receptor to human calcitonin-receptor-like receptor (CRLR) is 64.5%, frog CRLR is 64.7%, and flounder CRLR is 61.2% and this was higher than to human calcitonin receptor (CTR) (46.1%), frog CTR (54.7%), and flounder CTR (48.9%). We strongly suggested that this receptor is a ray CRLR based on phylogenetic analysis. In case of the second receptor, amino acid identity among CRLRs (human 50.5%, frog 50.7%, flounder 48.0%) and CTRs (human 43.2%, frog 49.1%, flounder 41.8%) was similar. From phylogenetic analysis of both CRLRs and CTRs, we believe that this receptor is ray CTR. The expression of ray CRLR mRNA was predominantly detected in the nervous system (brain) and vascular system (atrium, ventricle, and gill), which reflects the similar localization of CGRP in the nervous and vascular systems as mammals. It was observed that the second receptor was expressed in several tissues, namely cartilage, brain, pituitary gland, gill, atrium, ventricle, pancreas, spleen, liver, gall bladder, intestine, rectal gland, kidney, testis and ovary. This localization pattern was very similar to flounder CTR. Both receptor mRNAs were strongly expressed in the gill. This suggests that the calcitonin-family members are involved in the osmoregulation of stingray as this fish is known to be euryhaline. When a stingray was transferred to diluted seawater (20% seawater), the expression of both receptors significantly decreased in the gill. Similar results were obtained in the kidney of the stingray. Thus, our cloning and isolation of both receptors in the stingray will be helpful for elucidation of their physiological role(s) such as osmoregulation including calcium metabolism of cartilaginous fish.  相似文献   

9.
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.  相似文献   

10.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

11.
23Sodium binding to a partially purified beef brain and purified dogfish rectal gland (sodium + potassium)-activated adenosinetriphosphatase (NaK ATPase) has been studied by pulsed nmr. In both preparations addition of ATP (in the absence of Mg) increased the amount of Na bound to the enzyme protein. In the less-pure brain preparation there was some binding of Na to the protein in the absence of ATP but in the purer preparation from the rectal gland there was little or no binding without ATP. With the dogfish enzyme, potassium readily displaced bound sodium. The KD for sodium determined by nmr agreed closely with that determined kinetically. This, coupled with the fact that the dogfish enzyme required ATP for sodium binding suggests that the sodium detected by nmr in this preparation is due to binding at its specific site(s).  相似文献   

12.
13.
Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of 3H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases in inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.  相似文献   

14.
Ouabain binding in rectal gland ofSqualus acanthias   总被引:1,自引:0,他引:1  
In an attempt to examine the mechanisms of activation of (Na, K)-ATPase when epithelial transport is stimulated, the binding of ouabain to rectal gland tissue was measured before and after stimulation with dibutyryl cAMP and theophylline. Stimulation significantly altered the characteristics of ouabain binding to slices of Squalus acanthias rectal gland and to isolated rectal gland cells, accelerating the rate of binding and increasing the amount of ouabain bound at equilibrium when low concentrations of ouabain (10(-9) to 10(-7) M) were present in the medium. Scatchard plots of ouabain binding were nonlinear, suggesting at least two classes of binding sites, one of higher and one of lower affinity. Stimulation with cAMP and theophylline appeared to increase the affinity of the high-affinity site. Ouabain binding was increased by cAMP and theophylline even in the presence of furosemide (10(-4) M) or bumetanide (10(-5) M), and when Li+ was substituted for Na+, or NO3- for Cl- -maneuvers known to inhibit rectal gland secretion. The changes in ouabain binding induced by cAMP and theophylline do not appear, therefore, to be secondary to secretory activity but may reflect a change in the configuration, environment or location of existing enzyme so as to enhance its activity. Stimulation of ouabain binding cannot be demonstrated in whole homogenates of rectal gland, indicating that intact cells are necessary for the cyclic AMP-induced increase in ouabain binding to become manifest.  相似文献   

15.
Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as signals to activate some but not all of the elevated metabolic pathways and ionoregulatory mechanisms needed during processing of a meal.  相似文献   

16.
The central neuroendocrine system in the Drosophila brain includes two centers, the pars intercerebralis (PI) and pars lateralis (PL). The PI and PL contain neurosecretory cells (NSCs) which project their axons to the ring gland, a complex of peripheral endocrine glands flanking the aorta. We present here a developmental and genetic study of the PI and PL. The PI and PL are derived from adjacent neurectodermal placodes in the dorso-medial head. The placodes invaginate during late embryogenesis and become attached to the brain primordium. The PI placode and its derivatives express the homeobox gene Dchx1 and can be followed until the late pupal stage. NSCs labeled by the expression of Drosophila insulin-like peptide (Dilp), FMRF, and myomodulin form part of the Dchx1 expressing PI domain. NSCs of the PL can be followed throughout development by their expression of the adhesion molecule FasII. Decapentaplegic (Dpp), secreted along the dorsal midline of the early embryo, inhibits the formation of the PI and PL placodes; loss of the signal results in an unpaired, enlarged placodeal ectoderm. The other early activated signaling pathway, EGFR, is positively required for the maintenance of the PI placode. Of the dorso-medially expressed head gap genes, only tailless (tll) is required for the specification of the PI. Absence of the corpora cardiaca, the endocrine gland innervated by neurosecretory cells of the PI and PL, does not affect the formation of the PI/PL, indicating that inductive stimuli from their target tissue are not essential for early PI/PL development.  相似文献   

17.
In mammals, a principal bioactive component of the renin-angiotensin system (RAS), angiotensin II (ANG II), is known to be vasopressor, dipsogenic, a stimulant of adrenocortical secretion and to control glomerular and renal tubular function. Historically, a RAS analogous to that found in mammals was thought to have first evolved in the bony fishes. Recent research has identified the unusually structured elasmobranch [Asp(1)-Pro(3)-Ile(5)] ANG II. Physiological studies have demonstrated that ANG II in elasmobranchs is vasopressor, and stimulates interrenal gland production of the elasmobranch corticosteroid 1alpha-hydroxycorticosterone. The specific binding of ANG II in elasmobranchs has been reported in gills, heart, interrenal gland, gut and rectal gland. The precise osmoregulatory role ANG II plays in cartilaginous fishes is not yet known; however, putative evidence is emerging for a role in the control of drinking rate, rectal gland secretion, and kidney function.  相似文献   

18.
The salt gland of the spiny dogfish, Squalus acanthias, can be stimulated to secrete chloride by two different endogenous peptides: cardiac natriuretic peptide (CNP) and the neurotransmitter, vasoactive intestinal peptide (VIP). We examined the role of the actin cytoskeleton and of myosin light chains in this process by perfusing isolated rectal glands with and without an inhibitor of actin filament organization (cytochalasin D) and an inhibitor of myosin light chain kinase (ML-7). Cytochalasin D, 10(-6) M, reduced secretion stimulated by a 1-min bolus of CNP (5x10(-7) M) by 50-60%. In the presence of 10(-2) M procaine (which blocks neural release of VIP), cytochalasin D completely prevented CNP stimulation. In contrast, cytochalasin D did not inhibit stimulation of the rectal gland by VIP or by forskolin. Similarly, 5x10(-6)M ML-7 almost completely inhibited direct stimulation of rectal gland secretion by CNP, but did not alter chloride secretion induced by VIP or forskolin. Finally, the average time between hormonal injection and activation of secretion was 2 min longer for CNP than for VIP, consistent with the hypothesis that a contractile cellular function involving the cytoskeleton is important in CNP-induced chloride secretion, but less so when secretion is stimulated by VIP.  相似文献   

19.
The rectal gland of the dogfish is rich in inositol lipids. Total phospholipids from the gland contained 9.1 mol% of phosphatidylinositol (PtdIns), 1.0 mol% of phosphatidylinositol 4-phosphate (PtdIns4P) and 0.9 mol% of phosphatidylinositol 4,5-biphosphate (PtdIns4,5P2). [32P]Orthophosphate was readily incorporated into PtdIns, phosphatidic acid (PtdA) and especially into PtdIns4P and PtdIns4,5P2 in salt gland slices incubated in elasmobranch Ringer with glucose and no other additions over a 2 hr period. The calcium ionophore A23187 stimulated incorporation into PtdIns and PtdA, but not into PtdIns4P or PtdIns4,5P2. Oxygen uptake by rectal gland slices was maximally stimulated by 0.08mM forskolin, 2.5mM 8-chlorophenylthio cyclic AMP, 2.0mM dibutyryl cyclic AMP and 0.25mM theophylline. Stimulated oxygen uptake was inhibited by 0.1mM ouabain in all cases. Incorporation of [32P]orthophosphate into PtdIns, PtdA, PtdIns4P and PtdIns4,5P2 was inhibited by 0.08mM forskolin and 2.0mM dibutyryl cyclic AMP over a 2 hr period. The results are discussed in relation to the control of salt secretion by the rectal gland.  相似文献   

20.
Comparison of diverse orthologs is a powerful tool to study the structure and function of channel proteins. We investigated the response of human, killifish, pig, and shark cystic fibrosis transmembrane conductance regulator (CFTR) to specific inhibitors of the channel: CFTR(inh)-172, glibenclamide, and GlyH-101. In three systems, including organ perfusion of the shark rectal gland, primary cultures of shark rectal gland tubules, and expression studies of each ortholog in cRNA microinjected Xenopus laevis oocytes, we observed fundamental differences in the sensitivity to inhibition by these channel blockers. In organ perfusion studies, shark CFTR was insensitive to inhibition by CFTR(inh)-172. This insensitivity was also seen in short-circuit current experiments with cultured rectal gland tubular epithelial cells (maximum inhibition 4 ± 1.3%). In oocyte expression studies, shark CFTR was again insensitive to CFTR(inh)-172 (maximum inhibition 10.3 ± 2.5% at 25 μM), pig CFTR was insensitive to glibenclamide (maximum inhibition 18.4 ± 4.4% at 250 μM), and all orthologs were sensitive to GlyH-101. The amino acid residues considered responsible by previous site-directed mutagenesis for binding of the three inhibitors are conserved in the four CFTR isoforms studied. These experiments demonstrate a profound difference in the sensitivity of different orthologs of CFTR proteins to inhibition by CFTR blockers that cannot be explained by mutagenesis of single amino acids. We believe that the potency of the inhibitors CFTR(inh)-172, glibenclamide, and GlyH-101 on the CFTR chloride channel protein is likely dictated by the local environment and the three-dimensional structure of additional residues that form the vestibules, the chloride pore, and regulatory regions of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号