首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method was developed for the analytical and preparative isolation of basolateral plasma membranes from rat small intestine. They were separated on a self-orientating Percoll (modified colloidal silica) gradient starting with a heavy microsomal-membrane fraction and involving centrifugation at 48,000 g for 1 h. (Na+ + K+)-stimulated ATPase activity, used as a marker enzyme for the basolateral plasma membrane, is enriched 20-fold compared with that found in the homogenate of isolated intestinal epithelial cells.  相似文献   

2.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

3.
A study has been made to determine whether renal plasma membranes contain an HCO3 stimulated, ouabain insensitive Mg ATPase. Purified mitochondrial, microsomal and brush border membrane fractions have been isolated from rabbit kidney. The microsomal anion-sensitive ATPase activity appears to be entirely of mitochondrial origin on the basis of the effects of inhibitors of mitochondrial Mg ATPase. The brush border membrane fraction is contaminated with mitochondrial fragments and contains an Mg ATPase activity with low anion-sensitivity. Further purification of this fraction causes parallel decreases in anion-sensitivity of the Mg ATPase activity and in cytochrome c oxidase activity. These results indicate that conclusions previously reached by other investigators for a role of anion-sensitive Mg ATPase in the bicarbonate reabsorption of the proximal tubule may no longer be tenable.  相似文献   

4.
Lactoperoxidase-catalysed iodination was used to label intestinal epithelial cell sheets with 125I. The iodination was carried out under conditions that allowed little penetration of lactoperoxidase into the cells and membrane-bound 125I therefore provided an effective marker for following plasma-membrane fragments through subcellular-fractionation procedures. 2. After homogenization and isopycnic zonal centrifugation through sucrose gradients two peaks of membrane-bound 125I were detected. One coincided with brush border enzymes such as alkaline phosphatase, disaccharidases and L-leucine B-naphthylamidase, whereas the other was coincident with the major peak of (Na++K+)-stimulated ATPase (adenosine triphosphatase), which has been thought to be concentrated in the basolateral plasma membranes of these cells. Neither peak of 125I reflected the distribution of any marker for an intracellular organelle. 3. A larger proportion of the (Na++K+)-stimulated ATPase, and thus of the basolateral plasma-membrane material, was found in a crude 'mitochondrial' fraction. It was not readiily separated from mitochondria by conventional techniques of subcellular fractionation. 4. Treatment of the 'mitochondrial' fraction with digitonin increased the density of basolateral plasma membrane but had little effect on mitochondrial density. A purified preparation of digitonin-loaded basolateral plasma membranes was isolated at a density of 1.20-1.22 by isopycnic centrifugation. 5. The enzymic composition of this preparation of basolateral plasma membranes is compared with previous preparations isolated from intestinal mucosal 'scrape' materials and from isolated cells.  相似文献   

5.
The gills of both seawater and freshwater adapted eels have an ATPase activity which is stimulated by anions in the presence of Mg2+. Plasma membranes were distinguished from mitochondrial membranes with specific enzyme markers, the membrane fractions separated on a discontinuous sucrose gradient, and the ATPase activity of the plasma membranes studied. Activation by the anions of Cl- or HCO3- followed Michaelis-Menten kinetics and was competitively inhibited by SCN-. The Cl- and HCO3- activation characteristics were determined: no differences between the plasma membrane ATPase activities of freshwater and seawater-adapted fishes were observed. Maximal activity measurements after solubilization of the enzymes by Triton X 100 confirmed these findings. The function of a membrane anion-dependent ATPase in the brachial epithelium of euryhaline fish is discussed.  相似文献   

6.
《Insect Biochemistry》1991,21(7):749-758
The present study confirms previous reports of the presence of (Na+ + K+)-ATPase and anion-stimulated ATPase activity in Malpighian tubules of Locusta. In addition, the presence of a K+-stimulated, ouabain-insensitive ATPase activity has been identified in microsomal fractions. Differential and sucrose density-gradient centrifugation of homogenates has been used to separate membrane fractions which are rich in mitochondria, apical membranes and basolateral membranes; as indicated by the presence of succinate dehydrogenase and the presence or absence of non-specific alkaline phosphatase activity, respectively. Relatively high specific (Na+ + K+)-ATPase activity was associated with the basolateral membrane-rich fractions with only low levels of this activity being associated with the apical membrane-rich preparation. K+-stimulated ATPase activity was also associated, predominantly, with the basolateral membrane-rich fractions. However, comparison of the distribution of this activity with that of the (Na+ + K+)-ATPase suggests that the two enzymes did not co-separate. The possibility that the K+-stimulated ATPase was not associated with the basolateral plasma membrane is discussed.Anion-stimulated ATPase activity was found in the apical and basolateral membrane-rich fractions and in the fraction contaning mainly mitochondria. Nevertheless, the fact that this bicarbonate-stimulated activity did not co-separate with succinate dehydrogenase activity suggests that it was not exclusively mitochondrial in origin. These results are consistent with physiological studies indicating a basolateral (Na+ + K+)-ATPase but do not support the K+-stimulated ATPase as a candidate for the apical electrogenic pump. The possible role of the bicarbonate-stimulated ATPase activity in ion transport across both the basolateral and apical cell membranes is discussed.  相似文献   

7.
An ouabain-insensitive, Mg++-dependent, Na+-stimulated ATPase activity which is inhibited by furosemide was found in mucosal homogenate of rat small intestine. The subcellular localization of this ATPase activity was studied by means of isolated purified brush borders and basolateral plasma membranes. The results suggest a nearly identical distribution of Na+-activated and (Na+K+)-activated ATPase within the epithelial cells. Under conditions of alloxan and streptozotocin diabetes an increase of both ATPase activities can be found only in the basolateral plasma membranes. These observations agree well with the convective model of intestinal absorption.  相似文献   

8.
The localization of the anion-sensitive ATPase (EC 3.6.1.3) of bovine corneal endothelium has been investigated. Homogenates were fractionated by differential and density gradient centrifugation, into fractions enriched in plasma membranes and mitochondria. (Na+ + K+)-ATPase (EC 3.6.1.3) and cytochrome oxidase (EC 1.9.3.1) were used as marker enzymes for these two cell components, and glucose-6-phosphatase (EC 3.1.3.5) was used to identify endoplasmic reticulum. 5'-Nucleotidase (EC 3.1.3.5) was also measured but was found not to be exclusively associated with any one cell component. The activity of the anion-sensitive ATPase (HCO3--ATPase) was measured in suspensions that were frozen and thawed before assay in order to expose latent enzyme activity. The fraction containing the greatest amount of (Na+ + K+)-ATPase (35%) contained only 6% of the cytochrome oxidase and HCO3--ATPase. Conversely, the mitochondrial fraction, containing 40% of the cytochrome oxidase, contained about 40% of the HCO3--ATPase, but only 7% of the (Na+ + K+)-ATPase. The recoveries and relative degree of purification of the cytochrome oxidase and HCO3--ATPase were also nearly identical in the other fractions examined. It was concluded that the anion-sensitive ATPase activity of the corneal endothelium is located solely in the mitochondria and not in the plasma membrane. Consequently, any role that the enzymes may have in the transport of bicarbonate across this tissue, which had been suggested in earlier studies, must be an indirect one.  相似文献   

9.
The activity of ATPase was studied in highly purified rat liver and thymus cell nuclei, HCO3-, CO3(2-) and SO3(2-) stimulated nuclear ATPase in 1.5--2 times. HSO3- did not affect the enzyme activity, and NO3-, J-, ClO4-,F- and SCN- inhibited it. Bicarbonate increased V and decreased Ka for ATP. SCN- inhibited HCO3--ATPase activity non-competitively with respect to HCO3-. Mg2+-ATPase activity did not depend on pH, and HCO3-component of the activity was decreased under alkaline pH. Mg2+, Mn2+ and Co2+ increased the initial ATPase activity and helped its stimulation with HCO3-. Ba2+, Ni2+ and Zn2+ inhibited the ATPase activity, and Ca2+ did not affect it, Nuclear ATPase is sensitive to 2,4-dinitrophenol and DNAase. It is suggested that cell nuclei have their own H+-ATPase differing for some characteristics from mitochondrial H+-ATPase.  相似文献   

10.
Summary Bicarbonate-stimulated Mg2+ dependent ATPase activity was demonstrated both biochemically and cytochemically, in brush border membranes from rat, rabbit and guinea pig duodenum. There was no correlation between enzyme activity and basal HCO 3 - secretion rates in the different species. The concentration of HCO 3 - necessary for optimal stimulation of ATPase activity, degree of stimulation and total activity was higher in the rat than in other species. Activity was higher in rat duodenum than in the ileum. This is consistent with the proposed electrogenic HCO 3 - secretion in the duodenum. Distribution of activities of alkaline phosphatase and HCO 3 - -stimulated Mg2+-ATPase along the duodenal villus showed significant differences, suggesting that the two activities reflect, at least in part, distinct enzymes.  相似文献   

11.
The effects of monovalent cations and anions on the ATPase activity of rabbit small intestine mucosa membranes was studied. It was shown that the small intestine mucosa contains the ATPase activity sensitive to NaCl and NaHCO3. This activity, in contrast to the HCO3--ATPase activity, is inhibited by ethacrinic acid, is practically insensitive to thyocyanate, has a pH optimum of 6.2, is unstable upon storage and is not inhibited by 2 mM EDTA. The catalytic and regulatory properties of HCO3--ATPase and NaCl/NaHCO3-stimulated ATPase were compared; their possible involvement in secretion in small intestine epithelium is discussed.  相似文献   

12.
J W Soper  P L Pedersen 《Biochemistry》1976,15(12):2682-2690
The hydrolytic activity of the ATPase bound to purified inner membrane vesicles of rat liver mitochondria can be increased threefold by washing extensively with a high ionic strength phosphate buffer. The specific ATPase activities of such phosphate-washed membranes are the highest reported to date for a mitochondrial membrane preparation (21-24 mumol of ATP hydrolyzed min-1 mg-1 in bicarbonate buffer at 37 degrees C). Deoxycholate (0.1 mg/mg of protein) extracts from these membranes a soluble, cold-stable ATPase complex which exhibits a specific activity under optimal assay conditions of 12 mumol of ATP hydrolyzed min-1 mg-1. This complex is not sedimented by centrifugation at 201000 g for 90 min, and readily passes through a 250-A Millipore filter. The ATPase activity of the soluble complex is inhibited 95% by 2.4 muM oligomycin. In addition, inhibitions of 60% or better are obtained in the presence of 1-8 muM dicyclohexylcarbodiimide, p-chloromercuribenzoate, venturicidin, and aurovertin. While a similar complex may be extracted with Triton X-100 this preparation is always lower in both specific activity and in inhibitor sensitivities than the complex extracted with deoxycholate. Detergents of the Tween and Brij series and other detergents of the Triton series are also much less effective than deoxycholate in solubilizing the oligomycin-sensitive. ATPase complex of rat liver. It is concluded that deoxycholate is superior to other detergents as an extractant of the oligomycin-sensitive ATPase complex of rat liver mitochondria, and that the complex extracted with deoxycholate possesses a closer similarity to the membrane-associated ATPase than does the complex extracted with Triton X-100. These studies document the first report of a detergent-solubilized, oligomycin-sensitive ATPase preparation from rat liver mitochondria.  相似文献   

13.
We have applied free flow electrophoresis to separate the canalicular and basolateral (sinusoidal and lateral) domains of rat hepatocyte plasma membranes. Hepatocyte plasma membranes were prepurified by rat zonal and discontinous sucrose gradient centrifugation. In electrophoretic separation, the canalicular membranes were more deflected toward the anode than the basolateral membranes. Na+-dependent taurocholate uptake could be measured in both membrane fractions, transport activity being highest in fractions containing the highest specific activity in the basolateral marker enzyme Na+-K+-ATPase. Thus, differences in electrophoretic mobility permit the separation of functional intact plasma membrane vesicles derived from basolateral and canalicular plasma membrane domains of rat hepatocyte.  相似文献   

14.
The renal basolateral Na+/HCO 3 cotransporter is the main system responsible for HCO 3 transport from proximal tubule cells into the blood. The present study was aimed at purifying and functionally reconstituting the Na+/HCO 3 cotransporter protein from rabbit renal cortex. Highly purified rabbit renal cortical basolateral membrane vesicles (hereafter designated as original basolateral membrane), enriched 12-fold in Na-K-ATPase, were solubilized in 2% octylglucoside, and then reconstituted in l--phosphatidylcholine (proteoliposomes). Na+/HCO 3 cotransporter activity was assessed as the difference in 22Na uptake in the presence of HCO 3 and gluconate. The activity of the Na+/HCO 3 cotransporter was enhanced 18-fold in the solubilized protein reconstituted into proteoliposomes compared to the original basolateral membranes. The reconstituted solubilized purified protein exhibited kinetic properties similar to the cotransporter from original basolateral membranes. In addition, it was like the original cotransporter, inhibited by disulfonic stilbene SITS, and was eleetrogenic. The catalytic subunit of protein kinase A significantly inhibited Na+/HCO 3 cotransporter activity in proteoliposomes. The octylglucoside-solubilized protein was further purified by hydroxylapatite column chromatography, and this resulted in an additional enhancement of Na+/HCO 3 cotransporter activity of 80-fold over the original basolateral membranes. The fractions containing the highest activity were further processed by glycerol gradient centrifugation, resulting in a 124- to 300-fold increase in Na+/HCO 3 cotransporter activity compared to the original basolateral membranes. SDS-PAGE analysis showed an enhancement of a protein doublet of 56 kD MW in the glycerol gradient fraction. Our results demonstrate that we have partially purified and reconstituted the renal Na+/HCO 3 cotransporter and suggest that the 56 kD doublet protein may represent the Na+/HCO 3 cotransporter.This work was supported by the Merit Review Program from the Veterans Administration Central Office (J.A.L.A.), and the National Kidney Foundation of Illinois (A.A.B.).  相似文献   

15.
The existence of a membrane-bound HCO3-stimulated ATPase in intestinal mucosa is controversial. A crude brush border fraction of rat small intestinal homogenates contained HCO3-ATPase activity which was inhibited by preincubation with 3 mM EDTA. Alkaline phosphatase activity of this preparation was also inhibited in a parallel, time-dependent fashion by preincubation with EDTA. When 5 mM ZnSO4 accompanied 3 mM EDTA in the preincubation mix, preservation of both enzyme activities occurred, demonstrating a requirement of Zn for the activity of both these phosphatases. These studies support the earlier contention that HCO3-ATPase and alkaline phosphatase activities may be different properties of the same enzyme, and raise the possibility that the ATPase could play a role in intestinal ion transport. The failure to identify a membrane-bound HCO3-ATPase by other workers could be due to the exposure of EDTA which occurred in their tissue preparation.  相似文献   

16.
A significant increase of the (Na+ + K+)-activated ATPase was found in mucosal homogenates of rat small intestine under conditions of alloxan and streptozotocin diabetes. From studies with isolated plasma membranes it has been shown that the activity changes were caused by that part of the (Na+ + K+)-activated ATPase only which is localized in the basolateral plasma membranes, whereas the enzyme activity in the brush border region remains unchanged. In connection with the enhanced capacity of ion, nonelectrolyte and water absorption in experimental diabetes, our findings support a concept of intestinal transport mechanism which suggest that the basolateral part of the (Na+ + K+)-activated ATPase is responsible for metabolic energy supply. The luminal part of the enzyme may be involved in regulation of passive Na+ influx.  相似文献   

17.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

18.
The role of basolateral membrane fluidity in regulating Na-K ATPase activity along the crypt-villus axis in rabbit distal small intestine was assessed. Basolateral membranes were prepared from isolated villus and crypt enterocytes at 24- to 28-fold enhancement. Villus basolateral membranes were significantly (p < 0.001) more fluid than crypt basolateral membranes as measured by 1,6-diphenyl-1,3,5-hexatriene. No difference was seen between the two groups as measured by either 2-(9-anthroyloxy)-stearic fatty acid or 16-(9-anthroyloxy)-palmitic acid. Fluidity alterations were accompanied by an increased phospholipid content in villus membranes, which resulted in a decreased cholesterol:phospholipid ratio and an increased lipid:protein molar ratio. Na-K ATPase activity was significantly (p < 0.01) greater in villus basolateral membranes than in crypt membranes, and demonstrated a greater sensitivity to ouabain inhibition. Ouabain inhibition curves calculated from villus data fit well (p < 0.001) with a two binding site model, with a high affinity (Ki 16 nM) and a low affinity (Ki 4.2 microM) ouabain binding site. In crypt basolateral membranes, only a low affinity site was apparent (Ki 3.0 microM). Fluidizing crypt basolateral membranes in vitro with benzyl alcohol to levels seen in villus basolateral membranes resulted in the appearance of a high affinity ouabain binding site (Ki 110 nM) and an increased sensitivity of Na-K ATPase to ouabain inhibition. The fluidization of villus basolateral membranes eliminated the binding associated with the high affinity site. Treatment with methanol, as a control, did not alter Na-K ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The distribution of HCO3MINUS-ATPase activity was studied in cell fractions prepared from homogenates of rat liver. The level of mitochondrial contamination in the microsomal fraction depended on the fractionation procedure and on the method of homogenization. With proper care, microsomes with undetectable mitochondrial contamination could be prepared. These microsomes had no detectable HCO3MINUS-ATPase activity. Approximately 85% of the total HCO3minus-ATPase activity of the post 6000 times g-min supernatant was recovered in the mitochondrial fraction. The properties of this mitochondrial HCO3minus-ATPase were not distinguishable from those of the various microsomal HCO3minus-ATPases previously described by other investigators.  相似文献   

20.
Nerve growth factor (NGF) inhibits transepithelial HCO3- absorption in the rat medullary thick ascending limb (MTAL). To investigate the mechanism of this inhibition, MTALs were perfused in vitro in Na+-free solutions, and apical and basolateral membrane Na+/H+ exchange activities were determined from rates of pHi recovery after lumen or bath Na+ addition. NGF (0.7 nM in the bath) had no effect on apical Na+/H+ exchange activity, but inhibited basolateral Na+/H+ exchange activity by 50%. Inhibition of basolateral Na+/H+ exchange activity with ethylisopropyl amiloride (EIPA) secondarily reduces apical Na+/H+ exchange activity and HCO3- absorption in the MTAL (Good, D. W., George, T., and Watts, B. A., III (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 12525-12529). To determine whether a similar mechanism could explain inhibition of HCO3- absorption by NGF, apical Na+/H+ exchange activity was assessed in physiological solutions (146 mM Na+) by measurement of the initial rate of cell acidification after lumen EIPA addition. Under these conditions, in which basolateral Na+/H+ exchange activity is present, NGF inhibited apical Na+/H+ exchange activity. Inhibition of HCO3- absorption by NGF was eliminated in the presence of bath EIPA or in the absence of bath Na+. Also, NGF blocked inhibition of HCO3- absorption by bath EIPA. We conclude that NGF inhibits basolateral Na+/H+ exchange activity in the MTAL, an effect opposite from the stimulation of Na+/H+ exchange by growth factors in other systems. NGF inhibits transepithelial HCO3- absorption through inhibition of basolateral Na+/H+ exchange, most likely as the result of functional coupling in which primary inhibition of basolateral Na+/H+ exchange activity results secondarily in inhibition of apical Na+/H+ exchange activity. These findings establish a role for basolateral Na+/H+ exchange in the regulation of renal tubule HCO3- absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号