首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Photoaffinity-labelling of the glycine receptor of rat spinal cord   总被引:10,自引:0,他引:10  
The irreversible incorporation upon ultraviolet illumination of the glycine receptor antagonist, [3H]strychnine, into synaptic membrane fractions of rat spinal cord has been investigated. The specificity of this photoaffinity-labelling reaction for the glycine receptor was demonstrated by the following results: (a) the Kd value (9.7 nM) of the glycine-displaceable irreversible incorporation of [3H]strychnine was similar to the previously reported Kd of [3H]strychnine binding to the glycine receptor; (b) pre-illumination of the membranes with unlabelled strychnine led to a corresponding reduction in the number, but not the affinity, of reversible glycine-displaceable [3H]strychnine binding sites; (c) the ultraviolet light-induced incorporation into the membranes of [3H]strychnine was inhibited by different glycine receptor agonists; other neurotransmitter substances had little or no effect. Also, [3H]strychnine alone was shown to be stable upon illumination with ultraviolet light; this suggests that photocrosslinking of [3H]strychnine may require energy transfer from specific groups of its high-affinity receptor binding site. Upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis a single labelled polypeptide with a relative molecular mass of 48000 was revealed from spinal cord membranes photoaffinity-labelled with [3H]strychnine. Spinal cord membranes photoaffinity-labelled with the gamma-aminobutyric acid receptor ligand [3H]flunitrazepam, however, gave a single polypeptide with a relative molecular mass of 5- 0000. Treatment of membranes, labelled with [3H]strychnine, by endoglycosidase H did not alter the relative molecular mass of the 48000-Mr labelled polypeptide. Trypsin treatment, on the other hand, successively produced major fragments of relative molecular masses of 42000 and 37000. Also, even after extensive treatment with trypsin or chymotrypsin, greater than or equal to 90% of the radioactivity incorporated into the labelled membranes remained membrane-associated. It is concluded that the strychnine binding site of the glycine receptor is located on a protease-inaccessible, i.e. probably hydrophobic domain of the 48000-Mr subunit.  相似文献   

3.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

4.
The amino acid glycine is the primary inhibitory neurotransmitter of the mammalian spinal cord. Glycine has also been shown to facilitate the excitatory actions of glutamate at the N-methyl-D-aspartic acid receptor subtype. In this article, glycine is shown to increase the Ca2(+)-dependent release of [3H]norepinephrine from preloaded slices of the rat hippocampus. This effect was inhibited noncompetitively by nanomolar concentrations of strychnine, which differentiates it from the glycine site associated with the N-methyl-D-aspartate receptor. Glycine also released [3H]acetylcholine, but was without effect on the efflux of [3H]serotonin or gamma-[3H]aminobutyric acid from the same tissue preparation. The release of [3H]norepinephrine was reversibly blocked by tetrodotoxin, indicating the effect is not initiated at the noradrenergic terminals, but requires propagation of an action potential. The results suggest that a glycine site that is pharmacologically similar to that found in the spinal cord exists in the rat hippocampus. We suggest that this site may participate in modulating the release of specific neurotransmitters in the brain.  相似文献   

5.
Purification and characterization of the glycine receptor of pig spinal cord   总被引:13,自引:0,他引:13  
A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10 000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48 000, 58 000, and 93 000. Photoaffinity labeling with [3H]strychnine showed that the [3H]strychnine binding site is associated with the Mr 48 000 and, to a much lesser extent, the Mr 58 000 polypeptides. [3H]Strychnine binding to the purified receptor exhibited a dissociation constant KD of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the [3H]strychnine-labeled Mr 48 000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.  相似文献   

6.
The glycine receptor of rat spinal cord was solubilized with the nonionic detergent Triton X-100 and subsequently purified by affinity chromatography on aminostrychnine-agarose and wheat germ agglutinin-Sepharose. An overall purification of 1950-fold was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and mercaptoethanol revealed three glycine receptor-associated polypeptides of Mr = 48,000, 58,000, and 93,000. [3H]Strychnine was incorporated irreversibly into the Mr = 48,000 polypeptide upon UV-illumination. The dissociation constant (KD) of [3H]strychnine binding to the purified glycine receptor was 9.3 +/- 0.6 nM. The glycine receptor agonists glycine, beta-alanine, and taurine inhibited the binding of [3H]strychnine to the purified receptor. Gel filtration and sedimentation in sucrose/H2O and sucrose/D2O gradients gave a Stokes radius of 7.7 nm, a partial specific volume of 0.780 +/- 0.005 ml/g and a sedimentation coefficient s20,w of 8.2 +/- 0.2 S for the purified glycine receptor. From these data, a molecular weight of 246,000 +/- 6,000 was calculated for the glycine receptor protein.  相似文献   

7.
Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres absolute on [3H]glycine and [3H]gamma-aminobutyric acid ([3H]GABA) release. Pressure was found to exert a significant suppressive effect on the depolarization-induced calcium-dependent release of glycine and GABA by these spinal cord presynaptic nerve terminals. This study suggests that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure.  相似文献   

8.
Homogenates of rat dorsal or ventral spinal cord were subjected to centrifugation on a continuous density gradient. The gradient was generated according to a new method with the aid of a microprocessor-controlled HPLC pump. The distribution of substance P-like immunoreactivity (SPI) and somatostatin-like immunoreactivity (SRIFI) across the gradient showed two peaks. The SPI peak seen at lower density was found only in dorsal spinal cord tissue. No peak of SPI was seen at this position in homogenates prepared from the spinal cords of capsaicin-pretreated rats. The second peak of SPI, found at a higher density, was accompanied by peaks in the levels of endogenous 5-hydroxytryptamine (5-HT), [14C]glycine, and [3H]norepinephrine uptake. This peak was seen at the same density in the dorsal and the ventral spinal cord. Tissue derived from capsaicin-pretreated rats exhibited one peak of SPI, accompanied by a maximum of [14C]glycine uptake. The uptake of [3H]gamma-aminobutyric acid ( [3H]GABA) was found to have a maximum at a somewhat lower density than that of [14C]glycine. It is concluded that the peak of SPI found at lower density in the dorsal spinal cord is associated with nerve endings belonging to capsaicin-sensitive primary afferents, while other endings, including those also containing 5-HT, are probably associated with the peak of SPI found at higher density.  相似文献   

9.
Abstract— A method was developed for perfusion of the spinal subarachnoid space in the rat. Bidirectional steady-state fluxes of [14C]glycine between spinal fluid and plasma were measured. [14C]glycine clearance from spinal fluid was 5-fold greater than its clearance from plasma. Glycine was transported out of spinal fluid by a saturable process, and the rate of transport was unaffected by the other depressant amino acids, GABA, β-alanine, and taurine. Perfused [14C]glycine and [3H]GABA distributed in an intracellular compartment in spinal cord. The preparation should be useful for study of the release of these inhibitory amino acids from the intact spinal cord.  相似文献   

10.
[3H]Strychnine binding to rat pons + medulla membranes was used as a measure of glycine receptors or glycine receptor-coupled chloride channels in vitro. A series of compounds structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), which previously were shown to antagonize glycine responses in cat spinal cord, inhibited [3H]strychnine binding in micromolar concentrations. The most potent of these glycine antagonists, 5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol (iso-THAZ), was also the most potent inhibitor of [3H]strychnine binding, with a Ki of 1,400 nM. The Ki value for strychnine was 7.0 nM, whereas the Ki value for the mixed gamma-aminobutyric acid (GABA)/glycine antagonist 3 alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (RU 5135) was only 4.6 nM. Sodium chloride (1,000 mM) enhanced the affinity of strychnine, brucine, isostrychnine, and the nonselective GABA antagonist pitrazepin for [3H]strychnine binding sites, whereas the affinities of glycine, beta-alanine, and taurine were reduced. These sodium chloride shifts, however, were not predictive of antagonist or agonist properties, since the sodium chloride shift for the glycine antagonist iso-THAZ and of the other THIP-related antagonists were similar to those of the glycine-like agonists. The various sodium chloride shifts show that different groups of ligands bind to glycine receptor sites in different ways.  相似文献   

11.
It is widely accepted that glycine transporters of the GLYT1 type are situated on astrocytes whereas GLYT2 are present on glycinergic neuronal terminals where they mediate glycine uptake. We here used purified preparations of mouse spinal cord nerve terminals (synaptosomes) and of astrocyte-derived subcellular particles (gliosomes) to characterize functionally and morphologically the glial versus neuronal distribution of GLYT1 and GLYT2. Both gliosomes and synaptosomes accumulated [3H]GABA through GAT1 transporters and, when exposed to glycine in superfusion conditions, they released the radioactive amino acid not in a receptor-dependent manner, but as a consequence of glycine penetration through selective transporters. The glycine-evoked release of [3H]GABA was exocytotic from synaptosomes but GAT1 carrier-mediated from gliosomes. Based on the sensitivity of the glycine effects to selective GLYT1 and GLYT2 blockers, the two transporters contributed equally to evoke [3H]GABA release from GABAergic synaptosomes; even more surprising, the 'neuronal' GLYT2 contributed more efficiently than the 'glial' GLYT1 to mediate the glycine effect in [3H]GABA releasing gliosomes. These functional results were largely confirmed by confocal microscopy analysis showing co-expression of GAT1 and GLYT2 in GFAP-positive gliosomes and of GAT1 and GLYT1 in MAP2-positive synaptosomes. To conclude, functional GLYT1 are present on neuronal axon terminals and functional GLYT2 are expressed on astrocytes, indicating not complete selectivity of glycine transporters in their glial versus neuronal localization in the spinal cord.  相似文献   

12.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

13.
A L Gundlach 《FASEB journal》1990,4(10):2761-2766
Inherited congenital myoclonus in Poll Hereford calves is characterized by hyperesthesia and myoclonic jerks of the skeletal musculature that occur spontaneously and in response to sensory stimuli. The symptoms of the disorder suggest a failure of spinal inhibition and are similar to those in subconvulsive strychnine poisoning. Strychnine is a high-affinity antagonist of the synaptic actions of glycine. Our recent biochemical studies revealed a specific and marked deficit in [3H]strychnine binding sites in brain stem and spinal cord membranes from myoclonic calves compared with unaffected controls, reflecting a decrease in inhibitory glycine receptors. Glycine is a major inhibitory neurotransmitter in the mammalian central nervous system, and glycinergic transmission is important for the control of both motor and sensory functions in the spinal cord. In other studies, synaptosomes prepared from affected spinal cord showed a significantly increased ability to accumulate [3H]glycine, indicating an increased capacity of the high-affinity neuronal reuptake system for glycine. In contrast, spinal cord glycine concentrations and stimulus-induced release of endogenous glycine, measured in vitro, were unaltered. The major clinical signs of this myoclonic disorder can be explained by the reported deficiency of inhibitory glycine receptors in brain stem and spinal cord, and future research will be directed toward identifying the nature of the genetic alteration responsible for this deficiency. The characteristics of this bovine receptor abnormality are similar to those described for the mutant spastic mouse.  相似文献   

14.
The effect of tetanus toxin on depolarization-evoked and spontaneous synaptic release of inhibitory and excitatory neurotransmitters was examined in murine spinal cord cell cultures. Toxin action on the release of radiolabeled glycine and glutamate was followed over time intervals corresponding to the early phase of convulsant activity through the later phase of electrical quiescence. Tetanus toxin inhibited potassium-evoked release of [3H]glycine and [3H]glutamate in a time- and dose-dependent manner. Ninety minutes after the application of toxin (6 x 10(-10) M), the stimulated release of [3H]glycine was blocked completely, whereas stimulated release of [3H]glutamate was not blocked completely until 150-210 min after toxin application. Fragment C, the binding portion of the tetanus toxin molecule, had no effect on stimulated release of either transmitter. The spontaneous synaptic release of [3H]glycine was blocked totally within 90 min of toxin exposure. In contrast, the spontaneous release of [3H]glutamate, in toxin-exposed cultures, was elevated to nearly twice that of control cultures at this time. Thus, toxin-induced convulsant activity is characterized by a reduction in the spontaneous synaptic release of inhibitory neurotransmitter with a concomitant increase in the release of excitatory neurotransmitter, as well as the more rapid onset of blockade of depolarization-evoked release of inhibitory versus excitatory neurotransmitter.  相似文献   

15.
(Hetero)aromatic mono- and diesters of tropine and nortropine were prepared. Modulation of [3H]strychnine binding to glycine receptors of rat spinal cord was examined with a ternary allosteric model. The esters displaced [3H]strychnine binding with nano- or micromolar potencies and strong negative cooperativity. Coplanarity and distance of the ester moieties of diesters affected the binding affinity being nanomolar for isophthaloyl-bistropane and nortropeines. Nortropisetron had the highest affinity (K(A) approximately 10 nM). Two esters displayed negative cooperativity with glycine in displacement, while three esters of low-affinity and nortropisetron exerted positive cooperativity with glycine.  相似文献   

16.
beta-N-Oxalylamino-L-alanine (BOAA) is a dicarboxylic diamino acid present in Lathyrus sativus (chickling pea). Excessive oral intake of this legume in remote areas of the world causes humans and animals to develop a type of spastic paraparesis known as lathyrism. BOAA is one of several neuroactive glutamate analogs reported to stimulate excitatory receptors and, in high concentrations, cause neuronal vacuolation and necrosis. The present study investigates the action of BOAA in vitro on CNS high-affinity transport systems for glutamate, gamma-aminobutyric acid (GABA), aspartate, glycine, and choline and in the activity of glutamate decarboxylase (GAD), the rate-limiting enzyme in the decarboxylation of glutamate to GABA. Crude synaptosomal fractions (P2) from rat brain and spinal cord were used for all studies. [3H]Aspartate transport in brain and spinal cord synaptosomes was reduced as a function of BOAA concentration, with reductions to 40 and 30% of control values, respectively, after 15-min preincubation with 1 mM BOAA. Under similar conditions, transport of [3H]glutamate was reduced to 74% (brain) and 60% (spinal cord) of control values. High-affinity transport of [3H]GABA, [3H]glycine, and [3H]choline, and the enzyme activity of GAD, were unaffected by 1 mM BOAA. While these data are consistent with the excitotoxic (convulsant) activity of BOAA, their relationship to the pathogenesis of lathyrism is unknown.  相似文献   

17.
In the central nervous system, glycine binds to two recognition sites; one of them (G2), associated with the glutamate receptor, is insensitive to strychnine. Strychnine-insensitive sites were predominant in the forebrain areas and bound D-serine and D-alanine better than the respective L stereoisomers. [3H]D-serine was a more selective radioligand than [3H]glycine for the strychnine-insensitive sites. In the forebrain, the binding of both ligands was inhibited by the putative G2 receptor antagonists, 7-chlorokynurenate and 3-amino-1-hydroxy-2-pyrrolidone, while in pons and in spinal cord only the latter drug was effective. This may indicate the heterogeneity of strychnine-insensitive glycine recognition sites.  相似文献   

18.
Allosteric modulation of [3H]strychnine binding to glycine receptors (GlyRs) was examined in synaptosomal membranes of rat spinal cord. An allosteric model enabled us to determine the cooperativity factors of the allosteric agents with [3H]strychnine and glycine bindings (alpha and beta, respectively). We modified the allosteric model with a slope factor because the slope values of the displacement curves of partial agonists (beta-alanine, taurine and gamma-aminobutyric acid) were beyond unity. The slope factor was reduced only by 100 microM propofol. Further, propofol showed positive cooperativity (beta < 1) stronger with taurine than with glycine. The extent of the positive cooperativity of propofol was nearly independent from the potencies and structures of partial agonists. The steroidal alphaxalone and minaxolone also potentiated taurine better than glycine. Alphaxalone exerted weak negative cooperativity with [3H]strychnine binding. Displacement by taurine is attenuated by granisetron and m-chlorophenylbiguanide representing negative cooperativity (beta > 1) greater than with glycine. The results suggest a developmental role of elevated perinatal levels of taurine and neurosteroids as well as a better allosteric modulation of decreased agonist efficacies for impaired glycine receptor-ionophores.  相似文献   

19.
Clostridial glycine reductase multienzyme complex which catalyses the reaction: Glycine + ADP + Pi + 2H leads to Acetate + ATP + NH3 was solubilised and fractionated essentially according to the method of Stadtman [T.C. Stadtman (1970) Methods Enzymol. 17A, 956--966] into two components: protein A and 'glycine reductase' fraction. A reconstituted system obtained by combining the two components in the presence of dithiothreitol catalysed the conversion of glycine into acetate concomitant with the phosphorylation of ADP to ATP. Using the reconstituted system, in which the unwanted enzyme activity catalyzing an exchange of the alpha hydrogen atoms of glycine with the protons of the medium had been greatly reduced, it was found that the conversion of (2RS)-[2-14C, 2-3H1]glycine (3H/14C = 7.16) into acetate (3H/14C = 7.03) was attended by the retention of both the C-2 hydrogen atoms of glycine. Conversion of (2S)-[2-2H1, 2-3H1]glycine and (2R)-[2-2H1, 2-3H1]glycine by the reconstituted system gave (2S)-acetate and (2R)-acetate respectively showing that the reductive deamination of glycine occurs through an inversion of configuration. The cumulative information available on the glycine reductase reaction is embodied in a hypothetical mechanism of action for the enzyme.  相似文献   

20.
[3H]Glycine binding and glycine modulation of [3H]MK-801 binding have been used to study the glycine allosteric site associated with the N-methyl-D-aspartate receptor complex in postmortem human brain. The effect of glycine on [3H]MK-801 binding appeared sensitive to duration of terminal coma, and possibly postmortem delay. Thirty percent of the binding occurred in a subfraction of brain tissue and did not show enhancement by glycine and glutamic acid. [3H]Glycine binding to a subfraction free from this component was studied and showed high specific binding. KD and Bmax values showed considerable intersubject variability which did not appear to be due to demographic features or to tissue content of amino acids with an affinity for this site. The pharmacological characteristics of binding in this subfraction and a correlation between Bmax values and the maximal enhancement of [3H]MK-801 binding by glycine are consistent with [3H]glycine binding occurring to an N-methyl-D-aspartate receptor complex associated site. Further support for this is provided by a significantly lower Bmax value for [3H]glycine binding in subjects with Alzheimer's disease and reduced glycine enhancement of [3H]MK-801 binding. However, the effect of perimortem factors makes it difficult to confidently attribute this solely to a disease-related change in the receptor. The possible role of the glycine allosteric site in the treatment of neuropsychiatric disorders is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号