首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the current view of kinetin (K, N(6)-furfuryladenine) as an unnatural and synthetic cytokinin, recently it has been identified in plant DNA and plant extract. Here we describe identification of K in human urine using chromatography/mass-spectrometry analysis for the first time. The amount of kinetin in urine taken from unhealthy patients lung carcinoma was established to be 0.5 ng in 20 ml and a 100-fold reduced amount in healthy subjects. Since this rare base is a potential source of structural constrains it has to be removed from DNA by enzymatic DNA-repair reactions. It seems that the presence of kinetin in human is linked to oxidative damage processes.  相似文献   

2.
Kinetin inhibits protein oxidation and glycoxidation in vitro   总被引:8,自引:0,他引:8  
We tested the ability of N(6)-furfuryladenine (kinetin) to protect against oxidative and glycoxidative protein damage generated in vitro by sugars and by an iron/ascorbate system. At 50 microM, kinetin was more efficient (82% inhibition) than adenine (49% inhibition) to inhibit the bovine serum albumin (BSA)-pentosidine formation in slow and fast glycation/glycoxidation models. Kinetin also inhibited the formation of BSA-carbonyls after oxidation significantly more than adenine did. However both compounds inhibited the advanced glycation end product (AGE) formation to the same extent (59-68% inhibition). At 200 microM, kinetin but not adenine, limited the aggregation of BSA during glycation. These data suggest that kinetin is a strong inhibitor of oxidative and glycoxidative protein-damage generated in vitro.  相似文献   

3.
Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine)   总被引:1,自引:0,他引:1  
In this paper we review the data on the structure and properties of N6-furfuryladenine (kinetin, K) accumulated during the last forty years. In 1955, kinetin was isolated from DNA as an artifactual rearrangement product of the autoclaving process. Subsequently, its cytokinin activity has been established, demonstrating a wide variety of biological effects, including those on gene expression, inhibition of auxin action, stimulation of calcium flux, the cell cycle, and as an anti-stress and anti-ageing compound. Recently, our views on this very well known plant hormone have changed. There are new data, which show that it occurs in cellular DNA as the product of oxidative, secondary modification and a secondary reaction of DNA. Also new results on the biological function of kinetin have been reported. Various biological effects produced by this hormone in vitro and in vivo have made kinetin even more scientifically interesting and commercially attractive as an ingredient of many beauty cosmetics.  相似文献   

4.
N(6)-Furfuryladenine (kinetin) has been shown to have anti-ageing effects on several different systems including plants, human cells in culture, and fruitflies. Since most of the experimental data point toward kinetin acting as an antioxidant both in vitro and in vivo, and since much evidence supporting a causal role of oxidative damage in ageing is accumulating, we tested the antioxidant properties of kinetin directly. Using 8-oxo-2'deoxyguanosine (8-oxo-dG) in calf thymus DNA as a marker for oxidative damage, we demonstrate that kinetin significantly (P < 0.005) protects the DNA against oxidative damage mediated by the Fenton reaction. Kinetin inhibited 8-oxo-dG formation in a dose-dependent manner with a maximum of 50% protection observed at 100 microM kinetin.  相似文献   

5.
In this paper we show that transfer ribonucleic acids (tRNAs) catalyze the Diels-Alder cycloaddition reaction. A new DNA oxidative damage product, 6-furfuryladenine (kinetin) or its riboside (diene), was transformed with dimethyl acetylenedicarboxylate or maleic anhydride (dienophile). The reaction proceeds in the presence of tRNA at high pressure but not at ambient condition. If so tRNA in prebiotic conditions (RNA world) had at least two functions: catalytic and a carrier of genetic information. It means that tRNA at high pressure shows catalytic properties and is a true Diels-Alderase.  相似文献   

6.
We have tested the possible genesis of kinetin from a 2′-deoxyadenylate unit of DNA by a chemical route involving a head-to-tail transfer of deoxyribose from the 9 to the 3 position of the adenine nucleus via a cyclonucleoside, with subsequent elimination of 1′- and 3′-polar groups and 3 → N6 intramolecular rearrangement leading to kinetin. We have also determined quantitatively the per cent conversions to 3-furfuryladenine and/or kinetin of the following under autoclaving conditions at 120°, pH 4, 2 atm, and 4 hr: (1) adenine/furfury alcohol; (2) adenine/2-deoxy-d-ribose; (3) 2′-deoxyadenosine; (4) 3-furfuryladenine; (5) 3,5′-(3′-O-diethylphosphoryl-2′-deoxya-denosine)-cyclonucleoside p-toluenesulfonate. The sequence of reactions involving cyclonucleoside formation and rearrangement has been shown to be a chemically feasible route by which kinetin can be formed, although it is not the only way this cytokinin can be generated.  相似文献   

7.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

8.
We present a novel method for the PCR amplification of unknown DNA that flanks a known segment directly from human genomic DNA. PCR requires that primer annealing sites be present on each end of the DNA segment that is to be amplified. In this method, known DNA is placed on the uncharacterized side of the sequence of interest via DNA polymerase mediated generation of a PCR template that is shaped like a pan with a handle. Generation of this template permits specific amplification of the unknown sequence. Taq (DNA) polymerase was used to form the original template and to generate the PCR product. 2.2 kb of the beta-globin gene, and 657 bp of the 5' flanking region of the cystic fibrosis transmembrane conductance regulator gene, were amplified directly from human genomic DNA using primers that initially flank only one side of the region amplified. This method will provide a powerful tool for acquiring DNA sequence information.  相似文献   

9.
Chronic inflammation is associated with a variety of human diseases, including cancer, with one possible mechanistic link involving over-production of nitric oxide (NO*) by activated macrophages. Subsequent reaction of NO* with superoxide in the presence of carbon dioxide yields nitrosoperoxycarbonate (ONOOCO2-), a strong oxidant that reacts with guanine in DNA to form a variety of oxidation and nitration products, such 2'-deoxy-8-oxoguanosine. Alternatively, the reaction of NO and O2 leads to the formation of N2O3, a nitrosating agent that causes nucleobase deamination to form 2'-deoxyxanthosine (dX) and 2'-deoxyoxanosine (dO) from dG; 2'-deoxyinosine (dI) from dA; and 2'-deoxyuridine (dU) from dC, in addition to abasic sites and dG-dG cross-links. The presence of both ONOOCO2- and N2O3 at sites of inflammation necessitates definition of the relative roles of oxidative and nitrosative DNA damage in the genetic toxicology of inflammation. To this end, we sought to develop enzymatic probes for oxidative and nitrosative DNA lesions as a means to quantify the two types of DNA damage in in vitro DNA damage assays, such as the comet assay and as a means to differentially map the lesions in genomic DNA by the technique of ligation-mediated PCR. On the basis of fragmentary reports in the literature, we first systematically assessed the recognition of dX and dI by a battery of DNA repair enzymes. Members of the alkylpurine DNA glycosylase family (E. coli AlkA, murine Aag, and human MPG) all showed repair activity with dX (k(cat)/Km 29 x 10(-6), 21 x 10(-6), and 7.8 x 10(-6) nM(-1) min(-1), respectively), though the activity was considerably lower than that of EndoV (8 x 10(-3) nM(-1) min(-1)). Based on these results and other published studies, we focused the development of enzymatic probes on two groups of enzymes, one with activity against oxidative damage (formamidopyrimidine-DNA glycosylase (Fpg); endonuclease III (EndoIII)) and the other with activity against nucleobase deamination products (uracil DNA glycosylase (Udg); AlkA). These combinations were assessed for recognition of DNA damage caused by N2O3 (generated with a NO*/O2 delivery system) or ONOOCO2- using a plasmid nicking assay and by LC-MS analysis. Collectively, the results indicate that a combination of AlkA and Udg react selectively with DNA containing only nitrosative damage, while Fpg and EndoIII react selectively with DNA containing oxidative base lesions caused by ONOOCO2-. The results suggest that these enzyme combinations can be used as probes to define the location and quantity of the oxidative and nitrosative DNA lesions produced by chemical mediators of inflammation in systems, such as the comet assay, ligation-mediated polymerase chain reaction, and other assays of DNA damage and repair.  相似文献   

10.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

11.
We have examined the DNA damage produced by reaction of peroxyl radicals with human fibroblast DNA. DNA damage consisted of both strand breaks and base modifications. The extent of strand breaks and base modifications induced as a function of peroxyl radical concentration was determined by quantitation of fragment size distributions using denaturing glyoxal-agarose gel electrophoresis. Both strand breaks and base modifications increased in a log linear fashion with respect to peroxyl radical concentration. Oxidative base modifications were observed to occur to a greater extent than strand breaks at every concentration measured. The sequence-specific distribution of peroxyl radical induced base damage was mapped for 803 nucleotide positions using the method of ligation mediated PCR. A total of 87% of all guanine positions in the examined sequences was found to be significantly oxidized. The order of reactivity of DNA bases toward oxidation by peroxyl radicals was found to be G > C > T. Adenine is essentially unreactive. The yield of oxidative base modifications at guanines and cytosines by peroxyl radicals depends on the exact specification of 5' and 3' flanking bases in a polarity dependent manner. Every guanine in the 5'XGC3' motif was found to be oxidized, where X is any 5' neighbor. In contrast, 5' and 3' purine flanks drastically reduced the extent of peroxyl radical G oxidation. The pattern of base modification and the influence of nearest neighbors differs substantially from that previously reported for hydrogen peroxide damage mediated by low valent transition metal ions for the identical DNA sequences.  相似文献   

12.
The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR (1H and 13C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13C DEPT spectra. An octamer duplex, d(CGATTAGC.GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3'----5' end in relation to strand A [d(CGATTA6GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies.  相似文献   

13.
Tobacco cell suspension cultures were supplemented with 4 to 10 microM 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DBR). The cell suspensions were cultured in the presence or without a cytokinin, kinetin (N6-furfuryladenine). The responses of the cultures to DRB and (or) kinetin were measured by the evolution of cell mass or cell counts in the cultures, as a function of time or kinetin concentration. Chlorophyll biosynthesis was also used as a test-response to cytokinin and (or) DRB activities. It was concluded that DRB behaves as a specific inhibitor of the physiological responses to cytokinins. The evolution of the inhibition ratio versus kinetin concentration shows that DRB is not a competitor of the cytokinins.  相似文献   

14.
李炜东  梁布锋  祁自柏 《遗传》2004,26(3):349-352
利用PCR合成DNA长片段(Synthesis Large Frament DNA using PCR,SLFD PCR)是一种有效的合成长片段DNA的方法。采用一段已知的500~600bp碱基的DNA片段为PCR模板,根据所要合成的DNA序列可以设计一系列的PCR引物,这些引物都位于模板DNA的5’端,长度为50~60bp,且从5’到3’方向顺序重叠,重叠碱基数目为12~15,全部引物叠加所得到的DNA正是自己所要合成的DNA。这组引物中最3’端的一条含有一个BamH Ⅰ酶切位点,在该位点后面有15碱基与模板DNA5’端一致的序列。另外还设计一条与该模板匹配的下游引物,引物内也含有一个BamH Ⅰ酶切位点。首先采用5’端最右侧的引物与下游引物进行PCR,在PCR进行10个循环后,以此次PCR的产物为下一轮PCR的模板,该轮PCR采用右侧倒数第二个引物为上游引物,下游引物保持不变。采用类似的方法,完成所有的PCR循环,就可以得到所需要合成的DNA长片段。该方法尤其适合100~200碱基左右的长片段DNA的快速合成与克隆。  相似文献   

15.
Mao X  Jiang J  Xu X  Chu X  Luo Y  Shen G  Yu R 《Biosensors & bioelectronics》2008,23(10):1555-1561
We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.  相似文献   

16.
Detection of 5-methylcytosine in DNA sequences.   总被引:42,自引:22,他引:20       下载免费PDF全文
Col E1 DNA has methylated cytosine in the sequence 5'-CC*(A/T)GG-3' and methylated adenine in the sequence 5'-GA*TC-3' at the positions indicated by asterisks(*). When the Maxam-Gilbert DNA sequencing method is applied to this DNA, the methylated cytosine (5-methylcytosine) is found to be less reactive to hydrazine than are cytosine and thymine, so that a band corresponding to that base does not appear in the pyrimidine cleavage patterns. The existence of the methylated cytosine can be confirmed by analyzing the complementary strand or unmethylated DNA. In contrast, the methylated adenine (probably N6-methyladenine) cannot be distinguished from adenine with standard conditions for cleavage at adenine.  相似文献   

17.
Screen-printed carbon electrodes (SPCEs) have been investigated as possible sensors to identify gamma-irradiation induced oxidative damage in double stranded (ds) DNA. Studies were undertaken to explore the possibility of using both cyclic voltammetry and differential pulse voltammetry to identify changes due to oxidative damage. Initially, guanine, adenine and 8-oxoguanosine were examined and it was found possible to differentiate them from their voltammetric responses. The voltammetric response of 8-oxoguanosine was found to be linear over the concentration range 1-400 microM, with a slope of 0.0296 microA microM(-1) (R2 value of 0.9984), in the presence of 2mM concentrations of guanine and adenine. Investigations were made into harnessing these findings to identify oxidative damage in gamma-irradiated dsDNA. The presence of oxidative damage in these samples was readily identifiable, and the magnitude of the voltammetric response was found to be dose dependant (R2=0.9919). A simple sample preparation step involving only the dissolution of double stranded DNA sample in the optimised electrolyte (0.1M acetate buffer pH 4.5) was required. This report appears to be first describing the use of a SPCE to detect DNA damage which can be related to the dose of gamma-radiation used.  相似文献   

18.
Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety.  相似文献   

19.
In order to model the interaction of hemin with DNA and other polynucleotides, we have studied the degradation of DNA, RNA, and polynucleotides of defined structure by [meso-tetrakis(N-methyl-4-pyridyl)porphinato]manganese(III) (MnTMPP) + KHSO5. The activated porphyrin was shown to release adenine, thymine, and cytosine from DNA; RNA degradation afforded adenine, uracil, and cytosine. The same products were obtained from single- and double-stranded DNA oligonucleotides of defined sequence, and also from single-stranded DNA and RNA homopolymers. The overall yield of bases from the dode-canucleotide d(CGCT3A3GCG) was equal to 14% of the nucleotides present initially, indicating that each porphyrin catalyzed the release of approximately 4 bases. Although no guanine was detected as a product from any of the substrates studied, the ability of MnTMPP + KHSO5 to degrade guanine nucleotides was verified by the destruction of pGp, and by the appearance of bands corresponding to guanosine cleavage following treatment of 32P end labeled DNA restriction fragments with activated MnTMPP. Inspection of a number of sites of MnTMPP-promoted cleavage indicated that the process was sequence-selective, occurring primarily at G residues that were part of 5'-TG-3' or 5'-AG-3' sequences, or at T residues. Also formed in much greater abundance were alkali-labile lesions; these were formed largely at guanosine residues. Also studied was the degradation of a 47-nucleotide RNA molecule containing two hairpins. Degradation of the 5'-32P end labeled RNA substrate afforded no distinct, individual bands, suggesting that multiple modes of degradation may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
DNA nicking favors PCR recombination.   总被引:9,自引:4,他引:5       下载免费PDF全文
We attempted to use the polymerase chain reaction (PCR) to monitor in vitro recombination in a plasmid containing directly repeated sequences. Some of the plasmid preparations which had not been exposed to recombination conditions were however found to behave in the PCR test as if they had undergone homologous recombination. We show here that such false positives are attributable to a small degree of nicking and/or breaking of the DNA template. Presumably, such damage allows the formation of hybrid parental duplexes containing at least one truncated strand, the 3' end of which maps within the homology; extension of this 3' end by the polymerase then results in a linkage of sequences identical to that arising from homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号