共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. 总被引:5,自引:5,他引:5 下载免费PDF全文
Many ligninolytic basidiomycete fungi have been shown to secrete a group of peroxidase isozymes whose sole function appears to be the peroxide-dependent oxidation of manganous [Mn(II)] to manganic [Mn(III)] ions. Manganic chelates and these Mn peroxidases have been implicated as central to the degradation of various natural and synthetic lignins and lignin-containing effluents by white rot (ligninolytic) fungi. Another group of enzymes, the laccases, are commonly secreted by wood-rotting fungi, but are generally regarded as being able to oxidize (and usually polymerize) only phenolic substrates. In this report it is shown that in the presence of appropriate oxidizable phenolic accessory substances or primary substrates, a variety of laccases and peroxidases catalyzing one-electron oxidations can also produce Mn(III) chelates from Mn(II). 相似文献
2.
Laccase is one of the ligninolytic enzymes of white rot fungus Trametes versicolor 951022, a strain first isolated in Korea. This laccase was purified 209-fold from culture fluid with a yield of 6.2% using ethanol precipitation, DEAE-Sepharose, Phenyl-Sepharose, and Sephadex G-100 chromatography. T. versicolor 951022 excretes a single monomeric laccase showing a high specific activity of 91,443 U/mg for 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as a substrate. The enzyme has a molecular mass of approximately 97 kDa as determined by SDS-PAGE, which is larger than those of other laccases reported. It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 3.0 and a temperature of 50 degrees C. The Km value of the enzyme for substrate ABTS is 12.8 micrometer and its corresponding Vmax value is 8125.4 U/mg. The specific activity and substrate affinity of this laccase are higher than those of other white rot fungi, therefore, it may be potentially useful for industrial purposes. 相似文献
3.
A second laccase gene, CVLG1, was isolated from Coriolus versicolor. CVLG1 encodes a precursor protein of 526 amino acids which contains a 23-amino acid signal sequence, and the coding region is interrupted by 11 introns. The number of potential N-glycosylation sites in this product is 12 and the greatest among that of polyporales laccases. Moreover, this protein shares about 70% homology with other polyporales laccases. Genomic Southern analysis showed that C. versicolor laccases are encoded by more than four genes including CVLG1 and a transposed allele of this gene. 相似文献
4.
Summary The white rot fungus Coriolus versicolor MTCC 138 has been identified as an excellent producer of the industrially important enzyme laccase. The basal medium containing glucose gave laccase activity of 155 U/ml. Screening of different media components and their effects on laccase production by Coriolus versicolor was studied using one factor at a time and L9 (34) orthogonal array method. A two-fold increase (305 U/ml) in laccase production was observed using a combination of glucose and starch as carbon source and yeast extract as nitrogen source. This activity is very high as compared to most of the reported strains. Hence this strain was explored for enhancement in laccase. The formation of extracellular laccase could be considerably stimulated by the addition of copper in the optimized medium. Addition of 1 mM copper enhanced laccase activity to 460 U/ml. Laccase production was further enhanced using different aromatic inducers. Among different inducers used 2,5-xylidine was found to be the best, and gave maximum laccase activity of 820 U/ml with 1 mM concentration. Thus, this strain could be an efficient and attractive source for laccase production. 相似文献
5.
Agrochemicals, industrial compounds and their transformation products have been assayed for their ability to enhance laccase production in liquid cultures of Trametes versicolor, when added at 0.5 mM. After 3 days of treatment, enzymatic activity in the culture medium was increased 14-fold by 4-n-nonylphenol and 24-fold by aniline. Laccase activity was enhanced 10-fold by oxidised derivatives of the herbicide diquat, 17-fold by N,N-dimethyl-N-(5-chloro,4-hydroxyphenyl)urea and 22-fold by 9-fluorenone. 相似文献
6.
Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor 总被引:1,自引:0,他引:1
L. J. Jönsson E. Palmqvist N.-O. Nilvebrant B. Hahn-Hägerdal 《Applied microbiology and biotechnology》1998,49(6):691-697
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory
compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates:
enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify
inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase,
and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased
ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in
improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic
phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors
of the fermentation process.
Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998 相似文献
7.
C. Jolivalt A. Raynal E. Caminade B. Kokel F. Le Goffic C. Mougin 《Applied microbiology and biotechnology》1999,51(5):676-681
Transformation of N′,N′-dimethyl-N-(hydroxyphenyl)ureas was assayed in the presence of purified laccase produced by the fungus Trametes versicolor. The para- and ortho-hydroxyphenyl derivatives were enzymatically transformed, whereas the meta derivative was not. The performance of laccase-mediated transformation depended on the pH, with an optimum for the para-derivative degradation rate at pH 5. The pH also influenced the nature of the reaction products. The chemical was exclusively
oxidised into p-benzoquinone at pH 3 and into mainly N′,N′-dimethyl-N-[(2,5-cyclohexadiene-1-one)-4-ylidene]urea at pH 6. The ortho- derivative was transformed essentially into insoluble purple compounds, probably appearing as polymers resulting from coupling
of the parent compound.
Received: 14 September 1998 / Received revision: 23 November 1998 / Accepted: 29 November 1998 相似文献
8.
Laccase, purified from Coriolus versicolor, removed pentachlorophenol (PCP) from solution at pH 5, depending on initial PCP concentration and amount of laccase. With
100 units of laccase, 100% of 25 μg ml−1 PCP and 60% of 200 μg ml−1 PCP were removed respectively over 72 h. No free chloride was released in the reaction. In reaction with 100 μg PCP, products
were primarily polymers (about 80,000 MW) with only 2–3 pg of o- and p-chloranils formed. Polymers were stable to acid hydrolysis and no release of PCP, or other low-molecular-weight products,
was detected over several weeks. Laccase has a potential use in the biotreatment of aqueous effluents containing PCP, with
polymerised products being removed from solution due to their high molecular weight.
Received: 7 June 1999 / Received revision: 18 August 1999 / Accepted: 2 September 1999 相似文献
9.
The regulation of culture conditions, especially the optimization of substrate constituents, is crucial for laccase production by solid fermentation. To develop an inexpensive optimized substrate formulation to produce high-activity laccase, a uniform design formulation experiment was devised. The solid fermentation of Trametes versicolor was performed with natural aeration, natural substrate pH (about 6.5), environmental humidity of 60% and two different temperature stages (at 37 degrees C for 3 days, and then at 30 degrees C for the next 17 days). From the experiment, a regression equation for laccase activity, in the form of a second-degree polynomial model, was constructed using multivariate regression analysis and solved with unconstrained optimization programming. The optimized substrate formulation for laccase production was then calculated. Tween 80 was found to have a negative effect on laccase production in solid fermentation; the optimized solid substrate formulation was 10.8% glucose, 27.7% wheat bran, 9.0% (NH4)2SO4, and 52.5% water. In a scaled-up verification of solid fermentation at a 10 kg scale, laccase activity from T. versicolor in the optimized substrate formulation reached 110.9 IU/g of dry mass. 相似文献
10.
Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor 总被引:2,自引:0,他引:2
Under ligninolytic conditions, the white-rot basidiomycete Coriolus versicolor metabolized chloronitrofen (2, 4, 6-trichloro-4'-nitrodiphenyl ether; CNP) and nitrofen (2, 4-dichloro-4'-nitrodiphenyl ether, NIP), which constitute the largest class of commercially produced diphenyl ether herbicides. The pathway of CNP degradation was elucidated by the identification of fungal metabolites upon addition of CNP and its metabolic intermediates. The metabolic pathway was initially branched to form four metabolites--2, 4, 6-trichloro-3-hydroxy-4'-nitrodiphenyl ether, 2, 4-dichloro-6-hydroxy-4'-nitrodiphenyl ether, NIP, and 2, 4, 6-trichloro-4'-aminodiphenyl ether--indicating the involvement of hydroxylation, oxidative dechlorination, reductive dechlorination, and nitro-reduction. Of these reactions, hydroxylation was relatively major compared to the others. Extracellular ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase did not catalyze the oxidation of either CNP or NIP. Piperonyl butoxide, an inhibitor of cytochrome P450, suppressed fungal oxidation of CNP and NIP to their hydroxylated products. The inhibition resulted in increasing the amount of reductively dechlorinated and nitro-reduced products. These observations strongly suggest that basidiomycetes may possess a mechanism for a strict substrate recognition system and a corresponding metabolic response system to effectively degrade environmentally persistent aromatic compounds. 相似文献
11.
《Biochemical Engineering Journal》2007,33(2):188-191
Membrane-surface liquid culture (MSLC) is a promising method for the bioproduction of highly aerobic filamentous fungi [A. Ogawa, A. Yasuhara, T. Tanaka, T. Sakiyama, K. Nakanishi, Production of neutral protease by membrane-surface liquid culture of Aspergillus oryzae IAM2704, J. Ferment. Bioeng. 80 (1995) 35–40]. This paper reports on the production of laccase by Trametes versicolor on a microporous membrane of poly(l-lactic acid) (PLLA), which can be biodegraded via composting after use. The membrane was stable as a support for 24 days at 30 °C. During the first 9 days in MSLC, the fungus produced half as much laccase as it did in liquid-surface culture (LSC); however, the mycelium on the membrane was able to be re-used five times for laccase production. The laccase production was accelerated in the repeated use of the culture while the mycelium in LSC ceased to produce the enzyme. This study shows that compostable PLLA microporous membranes can be used for enzyme production by MSLC of filamentous fungi. 相似文献
12.
Adekunle Abiodun Emmanuel Wang Feng Hu Jianhua Ma Anzhou Guo Chen Zhuang Guoqiang Liu Chun-Zhao 《Bioprocess and biosystems engineering》2015,38(10):1973-1981
Bioprocess and Biosystems Engineering - Chitosan multiple addition strategy was developed to improve laccase production from Trametes versicolor cultures. The optimized multiple addition strategy... 相似文献
13.
Phenanthrene is a three-ring polycyclic aromatic hydrocarbon and commonly found as a pollutant in various environments. Degradation of phenanthrene by white rot fungus Trametes versicolor 951022 and its laccase, isolated in Korea, was investigated. After 36 h of incubation, about 46% and 65% of 100 mg/l of phenanthrene added in shaken and static fungal cultures were removed, respectively. Phenanthrene degradation was maximal at pH 6 and the optimal temperature for phenanthrene removal was 30 degrees C. Although the removal percentage of phenanthrene was highest (76.7%) at 10 mg/l of phenanthrene concentration, the transformation rate was maximal (0.82 mg/h) at 100 mg/L of phenanthrene concentration in the fungal culture. When the purified laccase of T versicolor 951022 reacted with phenanthrene, phenanthrene was not transformed. The addition of redox mediator, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) or 1-hydroxybenzotriazole (HBT) to the reaction mixture increased oxidation of phenanthrene by laccase about 40% and 30%, respectively. 相似文献
14.
The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4–1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers. 相似文献
15.
Ichinose H Nakamizo M Wariishi H Tanaka H 《Applied microbiology and biotechnology》2002,58(4):517-526
The fungal conversions of sulfur-containing heterocyclic compounds were investigated using the lignin-degrading basidiomycete Coriolus versicolor. The fungus metabolized a series of sulfur compounds--25 structurally related thiophene derivatives--via several different pathways. Under primary metabolic conditions, C. versicolor utilized thiophenes, such as 2-hydroxymethyl-, 2-formyl-, and 2-carboxyl-thiophenes, as a nutrient sulfur source for growth; thus, the fungus degraded these compounds more effectively in a non-sulfur-containing medium than in conventional medium. The product analysis revealed that several redox reactions, decarboxylation reactions, and C-S cleavage reactions were involved in the fungal conversion of non-aromatic thiophenes. On the other hand, benzothiophene (BT) and dibenzothiophene (DBT) skeletons were converted to water-soluble products. All the products and metabolic intermediates were more hydrophilic than the starting substrates. These metabolic actions seemed to be a chemical stress response against exogenously added xenobiotics. These metabolic reactions were optimized under ligninolytic conditions, also suggesting the occurrence of a fungal xenobiotic response. Furthermore, the fungus converted a series of BTs and DBTs via several different pathways, which seemed to be controlled by the chemical structure of the substrates. DBT, 4-methylDBT, 4, 6-dimethylDBT, 2-methylBT, and 7-methylBT were immediately oxidized to their S-oxides. BTs and DBTs with the hydroxymethyl substituent were converted to their xylosides without S-oxidation. Those with carboxyl and formyl substituents were reduced to form a hydroxymethyl group, then xylosidated. These observations strongly suggested the involvement of a fungal substrate-recognition and metabolic response mechanism in the metabolism of sulfur-containing heterocyclic compounds by C. versicolor. 相似文献
16.
Degradation of tetrachloroguaiacol is catalyzed by an extracellular enzyme, the laccase of the white-rot fungus Coriolus versicolor. This enzyme catalyzes the dechlorination of tetrachloroguaiacol and release of chloride ions. The pathway for the degradation
was deduced from the intermediates produced by purified laccase and 18O-labeling experiments. The first step is demethylation. The resulting tetrachlorocatechol is dechlorinated to give 2,3,5-trichloro-6-hydroxy-p-benzoquinone, 2,5-dichloro-3,6-dihydroxy-p-benzoquinone, and dichloro-6-hydroxy-p-benzoquinone. Isotopic experiments established the mechanism of dechlorination of tetrachloroguaiacol by laccase. The laccase-catalyzed
dechlorination is not caused by oxidative coupling but by nucleophilic substitution in which Cl- is released by water from cation radicals generated by laccase.
Received: 25 August 1995/Received revision: 27 October 1995/Accepted: 20 November 1995 相似文献
17.
Jolivalt C Madzak C Brault A Caminade E Malosse C Mougin C 《Applied microbiology and biotechnology》2005,66(4):450-456
Improvement of the catalytic properties of fungal laccases is a current challenge for the efficient bioremediation of natural media polluted by xenobiotics. We developed the heterologous expression of a laccase from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica as a first step for enzyme evolution. The full-length cDNA consisted of a 1,561-bp open reading frame encoding lacIIIb, a 499-amino-acid protein and a 21-amino-acid signal peptide. Native and yeast secretion signals were used to direct the secretion of the enzyme, with the native signal yielding higher enzyme activity in the culture medium. The level of laccase activity secreted by the transformed yeast was similar to that observed for the non-induced wild-type strain of T. versicolor. The identity of the recombinant enzyme was checked by Western blot and matrix-assisted laser desorption/ionization time-of-flight analysis. Electrophoresis separation in native conditions indicated a molecular mass of the recombinant protein slightly higher (5 kDa) than that of the mature T. versicolor laccase IIIb, suggesting a limited excess of glycosylation. The laccase production level reached 2.5 mg/l (0.23 units/ml), which is suitable for engineering purpose.The two first authors have contributed equally to this work. 相似文献
18.
19.
Necochea R Valderrama B Díaz-Sandoval S Folch-Mallol JL Vázquez-Duhalt R Iturriaga G 《FEMS microbiology letters》2005,252(2):235-241
Laccases are important enzymes for bioremediation and the best-characterised are from the fungus Trametes versicolor. Here, we describe the cloning and characterisation of a new variant of laccase from T. versicolor and its expression in Saccharomyces cerevisiae. We have performed a sequence-based analysis of Trametes laccases that leads to a proposal for a new nomenclature of this fungus laccases according to their phylogenetic relationships since their nomenclature based on IPs is ambiguous. We also describe the kinetic properties of the recombinant enzyme. 相似文献
20.
A genomic library of the white-rot fungus Trametes versicolor has been constructed and a gene coding for a lignin peroxidase has been isolated and sequenced. The gene, which contains 6 introns, encodes a protein of 346 amino acid residues, preceded by a tentative 26-residue signal peptide. The deduced amino-terminal sequence agrees with the amino-terminal end of a lignin peroxidase isozyme previously isolated from carbon-limited cultures of T versicolor. 相似文献