首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we analysed different Podospora anserina strains for their ability to induce spore killing and identified three new killer strains. Test crosses of killer strains with different sensitive strains revealed different second division segregation ratios suggesting an influence of the sensitive strain on the crossing-over frequency. In crosses of killer strain O with a sensitive strain, the frequency of two-spored asci was found to vary extremely from perithecium to perithecium. Furthermore, crosses of strain O with sensitive strain Us5 led to a significant proportion of asci containing an unexpected high number of surviving spores as the result of gene conversion. Finally, for the first time, we present data demonstrating that in a number of ascospores the killer and the corresponding sensitive allele is located in one individual nucleus. Mycelia derived from such ascospores display a "sensitive killer" phenotype. Crosses of these mycelia with a killer strain as well as with a sensitive strain result in spore killing. Strikingly, heterokaryotic spores containing the recombined "sensitive/killer" allele and a nucleus with a killer allele give rise to mycelia protected against spore killing during selfing.  相似文献   

2.
Kitani , Y., L. S. Olive , and Arif S. El -Ani . (Columbia U., New York City.) Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. Amer. Jour. Bot. 49(7): 697–706. Illus. 1962.—Aberrant segregation of the gray-spore color locus in Sordaria fimicola was studied with the aid of closely linked markers. It was found that 6:2 and 5:3 asci occur with about the same frequency, but asci with an excess of wild-type spores occur with a frequency 5.5 times that of asci with an excess of gray spores. Also, the frequency of related crossing over (occurring close to the miscopied loeus and involving the miscopying strand) was much higher than the expected value, and in 5:3 asci it appears to be at least twice that found in 6:2 asci. Nine aberrant 4:4 asci, each with 2 spore pairs heterogeneous for color, were found. These are believed to have resulted from reciprocal double transreplication. The rarest aberrant type was represented by a single 7:1 ascus, which is difficult to explain on the basis of a single meiotic process. Miscopying is discussed with relation to an 8-strand model of paired homologues and the occurrence of localized chromosome pairing during prezygotene DNA synthesis. Several possible explanations for the occurrence of aberrant tetrads are considered. Miscopying has also been found to involve several spore-color loci not previously studied; whereas, several other such mutant loci fail to show evidence of it. One locus (m) shows abnormal segregation of the 6:2 but not the 5:3 type.  相似文献   

3.
Wagner M  Briza P  Pierce M  Winter E 《Genetics》1999,151(4):1327-1340
The SMK1 mitogen-activated protein kinase is required for spore morphogenesis in Saccharomyces cerevisiae. In contrast to the multiple aberrant spore wall assembly patterns seen even within a single smk1 null ascus, different smk1 missense mutants block in a coordinated fashion at intermediate stages. One smk1 mutant forms asci in which the four spores are surrounded only by prospore wall-like structures, while another smk1 mutant forms asci in which the spores are surrounded by inner but not outer spore wall layers. Stepwise increases in gene dosage of a hypomorphic smk1 allele allow for the completion of progressively later morphological and biochemical events and for the acquisition of distinct spore-resistance phenotypes. Furthermore, smk1 allelic spore phenotypes can be recapitulated by reducing wild-type SMK1 expression. The data demonstrate that SMK1 is required for the execution of multiple steps in spore morphogenesis that require increasing thresholds of SMK1 activity. These results suggest that quantitative changes in mitogen-activated protein kinase signaling play a role in coordinating multiple events of a single cellular differentiation program.  相似文献   

4.
Ste9/Srw1 which shows sequence homology to Hctl from budding yeast, is an activator of the anaphase-promoting complex (APC) in the fission yeast Schizosaccharomyces pombe. By homology search of the S. pombe genome, we identified the gene fr1+, which encodes the protein with the highest homology to Ste9 among five Cdc20-like proteins. Like Ste9, Fzr1 contains seven WD-repeats in its C-terminal region. In spite of this structural similarity, however, overproduction of either of these proteins cannot complement mutants lacking the other. fzr1+ is transcribed exclusively during meiosis and sporulation, suggesting that it plays a role in these processes. In fact, the fzr1 disruptant formed aberrant asci, which contained only one or two mature spores, though meiotic nuclear divisions proceeded with kinetics similar to wild type, and meiotic segregation of chromosomes was normal. Structural alteration of spindle pole bodies, which is a prerequisite for the formation of the forespore membrane, occurred normally in fzr1delta during the second meiotic division. Localization of spore rim marker proteins fused to green fluorescent protein showed that nascent prespores were irregularly shaped, small in size and few in number in fzr1delta cells compared to wild-type cells. Furthermore, electron microscopy revealed that the outer layer of the spore walls was often missing in fzr1delta spores. These results show that Fzr1 is specifically involved in the assembly of the spore envelope and also in spore maturation. Fzr1, a structural homolog of the APC regulator, therefore plays an important role in spore morphogenesis.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.  相似文献   

6.
张路  王彩霞  李保华  李宝笃 《菌物学报》2015,34(6):1101-1110
炭疽叶枯病(Glomerella leaf spot)是我国苹果上新发现的一种病害。为了解围小丛壳Glomerella cingulata子囊孢子的交配方式、生物学特性和致病性,从安徽砀山、山东牟平等地采集病害样品,经分离培养和纯化获得单孢菌株。在适宜条件下单孢菌株可产生子囊和子囊孢子,经过毛细管破子囊壁后单孢分离,获得12个子囊,每个子囊有8个子囊孢子。其中10个子囊中有4个“正”孢子(+)和4个“负”孢子(-),2个子囊中只有“负”孢子。子囊孢子单孢菌株培养72h,“正”菌株菌落白色,以营养生长为主;“负”菌株菌落灰白色,直径略小于正菌株,菌丝稀疏,边缘菌丝白色,中部有大量橙色的分生孢子堆。“正”、“负”菌株异宗配合后,可产生大量可育子囊壳;单独的“正”菌株有性生殖产生稀疏丛簇状的可育子囊壳;单个的“负”菌株只能产生分散且不育的子囊壳。“正”、“负”菌株菌落的生长速度没有差异,对温度、营养、光照和pH值的敏感性也没有差异,但“正”、“负”菌株的致病性存在差异。正菌株的有性生殖没有导致rDNA-ITS、β-tubulin基因碱基序列变异。  相似文献   

7.
It was shown previously that when a chromosomal Spore killer factor is heterozygous in Neurospora species with eight-spored asci, the four sensitive ascospores in each ascus die and the four survivors are all killers. Sk-2K and Sk-3K are nonrecombining haplotypes that segregate with the centromere of linkage group III. No killing occurs when either one of these killers is homozygous, but each is sensitive to killing by the other in crosses of Sk-2K x Sk-3K. In the present study, Sk-2K and Sk-3K were transferred by recurrent backcrosses from the eight-spored species Neurospora crassa into Neurospora tetrasperma, a pseudohomothallic species which normally makes asci with four large spores, each heterokaryotic for mating type and for any other centromere-linked genes that are heterozygous in the cross. The action of Sk-2K and Sk-3K in N. tetrasperma is that predicted from their behavior in eight-spored species. A sensitive nucleus is protected from killing if it is enclosed in the same ascospore with a killer nucleus. Crosses of Sk-2K x Sk-2S, Sk-3K x Sk-3S, and Sk-sK x Sk-3K all produce four-spored asci that are wild type in appearance, with the ascospores heterokaryotic and viable. The Eight-spore gene E, which shows variable penetrance, was used to obtain N. tetrasperma asci in which two to eight spores are small and homokaryotic. When killer and sensitive alleles are segregating in the presence of E, only those ascospores that contain a killer allele survive. Half of the small ascospores are killed. In crosses of Sk-2K x Sk-3K (with E heterozygous), effectively all small ascospores are killed. The ability of N. tetrasperma to carry killer elements in cryptic condition suggests a possible role for Spore killers in the origin of pseudohomothallism, with adoption of the four-spored mode restoring ascospore viability of crosses in which killing would otherwise occur.  相似文献   

8.
During sporulation of diploids from crosses between different strains of the yeast Saccharomycopsis (Candida) lipolytica irregular numbers of ascospores per ascus have been observed. Using the serial section method it could be shown now by means of electron microscopy that in one-, two-, and three-spored asci unenclosed "naked" nuclei occur additionally to nuclei incorporated in mature spores. It was demonstrated that the production of less than four spores per ascus in this yeast is not the result of a lack of meiotic products but of the nonutilization of nuclei from meiosis. In 2--4 spored asci usually four products of meiosis in form of enclosed and free nuclei could be demonstrated which indicate a normal meiotic division. All ascospores derived from asci with different spore numbers are uninuclear. It is assumed that a defect in spore formation caused by structural changes of chromosomes or aneuploidy should give rise to the occurrence of non incorporated nuclei and spore irregularity. It was concluded that meiosis and spore formation in Saccharomycopsis lipolytica seem to represent parallel and coordinated processes which generally resemble those recorded for Saccharomyces cerevisiae and Hansenula species.  相似文献   

9.
Thomas JH  Botstein D 《Genetics》1987,115(2):229-232
Diploid Saccharomyces cerevisiae strains normally sporulate to produce tetrahedral unordered asci containing four spores (tetrads). We report that when newly formed zygotes are subjected to the same sporulation conditions, they form predominantly linear ordered tetrads. We show that the two spores from each end of such a linear tetrad invariably contain nonsister centromeres. Spore viability, recombination and independence of centromere segregation appear unaffected.  相似文献   

10.
The teleomorph of Candida kunwiensis Hong, Bae, Herzberg, Titze, Lachance, Metschnikowia kunwiensis, is described. Repeated attempts to obtain ascospore formation succeeded using modified V8 sporulation media and extended incubation times. The asci are ovoid, with only a small protrusion caused by the spore(s). The species is diplontic, possibly homothallic, with one or two ascospores per ascus. Aside from having atypical ovoid asci, the acicular shape of the spores is characteristic of the genus Metschnikowia. The type strain is CBS 9676(T).  相似文献   

11.
The asci of Metschnikowia species normally contain two ascospores (never more), raising the question of whether these spores are true meiotic products. We investigated this problem by crossing genetically-marked strains of the haploid, heterothallic taxa Metschnikowia hawaiiensis, Metschnikowia continentalis var. continentalis, and M. continentalis var. borealis. Asci were dissected and the segregation patterns for various phenotypes analyzed. In all cases (n = 47) both mating types (h+ and h-) were recovered in pairs of sister spores, casting further uncertainty as to whether normal meiosis takes place. However, the segregation patterns for cycloheximide resistance and several auxotrophic markers were random, suggesting that normal meiosis indeed occurs. To explain the lack of second-division segregation of mating types, we concluded that crossing-over does not occur between the mating-type locus and the centromere, and that meiosis I is tied to spore formation, which explains why the number of spores is limited to two. The latter assumption was also supported by fluorescence microscopy. The second meiotic division takes place inside the spores and is followed by the resorption of two nuclei, one in each spore.  相似文献   

12.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

13.
Amitrole treatment causes multispored ascus production by cells of a yeast strain whose asci normally contain two diploid spores. Single spores were isolated from asci containing two to eight spores and their ability to germinate was determined. Cells in colonies grown from single spores sporulated in the same manner as the parent strain indicating that amitrole had not induced meiotic division in the developing asci.  相似文献   

14.
Pathogenic strains of Sporothrix schenkii may show triangular spores, whose angular shape is maintained by a tiebeam effect in the inner cell wall structure. This difference in wall structure lies adjacent to a folded and possibly more active part of the spore cytoplasm. The supposed generation of asci in old cultures was simulated by the death of hyphae which are reinvaded by intrahyphal growth with intrahyphal spore production, while true asci were not seen.  相似文献   

15.
D. J. Bond 《Mutation research》1976,37(2-3):213-220
A system is described for the study of abnormal chromosome segregation in Sordaria brevicolis. The system utilizes two complementing alleles of the b1 locus on linkage group II. Abnormal asci containing black disomic ascospores were detected which fall into two main categories. (a) Non disjunctional asci in which the disomic spores were present together with an equal number of abortive (nullosomic) spores and (b) asci in which an extra replication of the chromosomes had occurred resulting in pseudo-wild types being formed without accompanying spore abortion. Calculations indicate that the non-disjunction frequencies at the first and second divisions of meiosis are 4.25×10−4 and 4.35×10−4 respectively. It is suggested that the system is potentially a valuable one both for the study of meiotic non-disjunction and other causes of aneuploidy.  相似文献   

16.
CHALONER  W. G. 《Annals of botany》1958,22(2):197-204
A new type of fossil spore tetrad, Didymosporites scotti gen.et sp. nov. is described from the Dinantian and Namurian (Carboniferous)of Ireland, Scotland, and England. The spores always occur inthe form of a tetrad composed of two large (presumably fertile)and two minute (presumably abortive) spores, all with cutinizedwalls. Reasons are given for regarding these as the megasporesof the coenopterid fern Stauropteris burntislandica; their distributionindicates a far wider range in time and space than that previouslyknown for this species. Their occurrence as adhering tetradssuggests that Stauropteris burntislandica 'shed' its megasporesstill enclosed in the sporangiumIan interesting analogy withboth Lepidocarpon and the seeds of Pteridosperms.  相似文献   

17.
In crosses of [ANTr8] with auxotrophic strains, resistance to antimycin segregates almost 50:50 in random spore analysis with a slight preponderance for the sensitivity allele. Tetrad analysis, however, shows all possible types of tetrads (2:2; 3:1; 1:3; 4:0; 0:4 resistant versus sensitive) with an excess of 2:2 segregations and sectoring of colonies on antimycin medium indicating an extrachromosomal mode of inheritance. The overall ratio of resistant versus sensitive spores is the same as compared with random spore data. Using a mutant blocked in meiosis (mei 1) mitotic segregation of stable diploids is achieved, leading to a ratio of 20% resistant to 80% sensitive clones. Possible reasons for the bias in transmission of the resistance determinant is discussed.  相似文献   

18.
We have investigated the effects of centrifugation on sporepolarity, asymmetric cell division, and rhizoid differentiationin the sensitive fern Onoclea sensibilis L. Centrifugation at10000 g for 30 min produces a random orientation of spores withstratification of the cell contents. After centrifugation atmost early stages of development, the nucleus retains its normalpattern of migration from the centre of the ellipsoidal sporeto the proximal face and then to an end of the spore, withoutregard to the orientation of stratification. This indicatesthat the polarity of the spore is stable to centrifugation.As long as the nucleus migrates to an end of the spore and asymmetriccell division occurs, the small cell differentiates into a rhizoid.The arrangement of large cytoplasmic organelles appears to haveno influence on nuclear migration, asymmetric cell division,or rhizoid differentiation. The only period during developmentwhen centrifugation blocks asymmetric cell division is immediatelypreceding and during mitosis and cytokinesis. Spores centrifugedat this stage do not complete nuclear migration, and symmetriccell division results, with neither cell differentiating intoa rhizoid. The source of the stable polarity of the spore isdiscussed. cell polarity, rhizoid differentiation, centrifugation, Onoclea sensibilis L., sensitive fern, fern spores  相似文献   

19.
Sporulation in yeast requires that a modified form of chromosome segregation be coupled to the development of a specialized cell type, a process akin to gametogenesis. Mps1p is a dual-specificity protein kinase essential for spindle pole body (SPB) duplication and required for the spindle assembly checkpoint in mitotically dividing cells. Four conditional mutant alleles of MPS1 disrupt sporulation, producing two distinct phenotypic classes. Class I alleles of mps1 prevent SPB duplication at the restrictive temperature without affecting premeiotic DNA synthesis and recombination. Class II MPS1 alleles progress through both meiotic divisions in 30-50% of the population, but the asci are incapable of forming mature spores. Although mutations in many other genes block spore wall formation, the cells produce viable haploid progeny, whereas mps1 class II spores are unable to germinate. We have used fluorescently marked chromosomes to demonstrate that mps1 mutant cells have a dramatically increased frequency of chromosome missegregation, suggesting that loss of viability is due to a defect in spindle function. Overall, our cytological data suggest that MPS1 is required for meiotic SPB duplication, chromosome segregation, and spore wall formation.  相似文献   

20.
Summary Asci showing aberrant segregation at the buff spore colour locus in Sordaria brevicollis were selected from crosses between buff mutants and wild type in the presence of closely-linked flanking markers. The frequency of crossing-over associated with aberrant segregations was calculated and corrected to allow for crossovers between the flanking markers incidental to the aberrant segregation. The average frequency of crossing over was found to be related to the class of aberrant ascus studied. 5+:3m and 3+:5m asci showed 16% associated marker recombination while 6+:2m and 2+:6m asci showed 27% recombination. The frequency of tritype and tetratype postmeiotic segregation asci was calculated. Only 3% tetratypes were found and this is thought to indicate a low frequency of symmetric hybrid DNA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号