首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.  相似文献   

2.
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming d-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than d-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy.  相似文献   

3.
The glyoxalase pathway of Leishmania infantum was kinetically characterized as a trypanothione-dependent system. Using time course analysis based on parameter fitting with a genetic algorithm, kinetic parameters were estimated for both enzymes, with trypanothione derived substrates. A K(m) of 0.253 mm and a V of 0.21 micromol.min(-1).mg(-1)for glyoxalase I, and a K(m) of 0.098 mm and a V of 0.18 micromol.min(-1).mg(-1) for glyoxalase II, were obtained. Modelling and computer simulation were used for evaluating the relevance of the glyoxalase pathway as a potential therapeutic target by revealing the importance of critical parameters of this pathway in Leishmania infantum. A sensitivity analysis of the pathway was performed using experimentally validated kinetic models and experimentally determined metabolite concentrations and kinetic parameters. The measurement of metabolites in L. infantum involved the identification and quantification of methylglyoxal and intracellular thiols. Methylglyoxal formation in L. infantum is nonenzymatic. The sensitivity analysis revealed that the most critical parameters for controlling the intracellular concentration of methylglyoxal are its formation rate and the concentration of trypanothione. Glyoxalase I and II activities play only a minor role in maintaining a low intracellular methylglyoxal concentration. The importance of the glyoxalase pathway as a therapeutic target is very small, compared to the much greater effects caused by decreasing trypanothione concentration or increasing methylglyoxal concentration.  相似文献   

4.
The glyoxalase pathway catalyzes the formation of d-lactate from methylglyoxal, a toxic byproduct of glycolysis. In trypanosomatids, trypanothione replaces glutathione in this pathway, making it a potential drug target, since its selective inhibition might increase methylglyoxal concentration in the parasites. Two glyoxalase II structures were solved. One with a bound spermidine molecule (1.8 A) and the other with d-lactate at the active site (1.9 A). The second structure was obtained by crystal soaking with the enzyme substrate (S)-d-lactoyltrypanothione. The overall structure of Leishmania infantum glyoxalase II is very similar to its human counterpart, with important differences at the substrate binding site. The crystal structure of L. infantum glyoxalase II is the first structure of this enzyme from trypanosomatids. The differential specificity of glyoxalase II toward glutathione and trypanothione moieties was revealed by differential substrate binding. Evolutionary analysis shows that trypanosomatid glyoxalases II diverged early from eukaryotic enzymes, being unrelated to prokaryotic proteins.  相似文献   

5.
Trypanosoma brucei, the causative agent of African sleeping sickness, has three nearly identical genes encoding cysteine homologues of classical selenocysteine-containing glutathione peroxidases. The proteins are expressed in the mammalian and insect stages of the parasite. One of the genes, which contains a mitochondrial as well as a glycosomal targeting signal has been overexpressed. The recombinant T. brucei peroxidase has a high preference for the trypanothione/tryparedoxin couple as electron donor for the reduction of different hydroperoxides but accepts also T. brucei thioredoxin. The apparent rate constants k(2)' for the regeneration of the reduced enzyme are 2 x 10(5) m(-1) s(-1) with tryparedoxin and 5 x 10(3) m(-1) s(-1) with thioredoxin. No saturation kinetics was observed and the rate-limiting step of the overall reaction is reduction of the hydroperoxide. With glutathione, the peroxidase has marginal activity and reduction of the enzymes becomes limiting with a k(2)' value of 3 m (-1) s(-1). The T. brucei peroxidase, in contrast to the related Trypanosoma cruzi enzyme, also accepts hydrogen peroxide as substrate. The catalytic efficiency of the peroxidase studied here is comparable with that of the peroxiredoxin-like tryparedoxin peroxidases, which shows that trypanosomes possess two distinct peroxidase systems both dependent on the unique dithiol trypanothione.  相似文献   

6.
Numerous physiological aldehydes besides glucose are substrates of aldose reductase, the first enzyme of the polyol pathway which has been implicated in the etiology of diabetic complications. The 2-oxoaldehyde methylglyoxal is a preferred substrate of aldose reductase but is also the main physiological substrate of the glutathione-dependent glyoxalase system. Aldose reductase catalyzes the reduction of methylglyoxal efficiently (k(cat)=142 min(-1) and k(cat)/K(m)=1.8x10(7) M(-1) min(-1)). In the presence of physiological concentrations of glutathione, methylglyoxal is significantly converted into the hemithioacetal, which is the actual substrate of glyoxalase-I. However, in the presence of glutathione, the efficiency of reduction of methylglyoxal, catalyzed by aldose reductase, also increases. In addition, the site of reduction switches from the aldehyde to the ketone carbonyl. Thus, glutathione converts aldose reductase from an aldehyde reductase to a ketone reductase with methylglyoxal as substrate. The relative importance of aldose reductase and glyoxalase-I in the metabolic disposal of methylglyoxal is highly dependent upon the concentration of glutathione, owing to the non-catalytic pre-enzymatic reaction between methylglyoxal and glutathione.  相似文献   

7.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

8.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

9.
Journal of Plant Research - The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II)...  相似文献   

10.
The human red-blood-cell glyoxalase system was modified by incubation with high concentrations of glucose in vitro. Red-blood-cell suspensions (50%, v/v) were incubated with 5 mM- and 25 mM-glucose to model normal and hyperglycaemic glucose metabolism. There was an increase in the flux of methylglyoxal metabolized to D-lactic acid via the glyoxalase pathway with high glucose concentration. The increase was approximately proportional to initial glucose concentration over the range studied (5-100 mM). The activities of glyoxalase I and glyoxalase II were not significantly changed, but the concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, and the percentage of glucotriose metabolized via the glyoxalase pathway, were significantly increased. The increase in the flux of intermediates metabolized via the glyoxalase pathway during periodic hyperglycaemia may be a biochemical factor involved in the development of chronic clinical complications associated with diabetes mellitus.  相似文献   

11.
Trypanosoma brucei, the causative agent of African sleeping sickness, synthesizes deoxyribonucleotides via a classical eukaryotic class I ribonucleotide reductase. The unique thiol metabolism of trypanosomatids in which the nearly ubiquitous glutathione reductase is replaced by a trypanothione reductase prompted us to study the nature of thiols providing reducing equivalents for the parasite synthesis of DNA precursors. Here we show that the dithiol trypanothione (bis(glutathionyl)spermidine), in contrast to glutathione, is a direct reductant of T. brucei ribonucleotide reductase with a K(m) value of 2 mm. This is the first example of a natural low molecular mass thiol directly delivering reducing equivalents for ribonucleotide reduction. At submillimolar concentrations, the reaction is strongly accelerated by tryparedoxin, a 16-kDa parasite protein with a WCPPC active site motif. The K(m) value of T. brucei ribonucleotide reductase for T. brucei tryparedoxin is about 4 micrometer. The disulfide form of trypanothione is a powerful inhibitor of the tryparedoxin-mediated reaction that may represent a physiological regulation of deoxyribonucleotide synthesis by the redox state of the cell. The trypanothione/tryparedoxin system is a new system providing electrons for a class I ribonucleotide reductase, in addition to the well known thioredoxin and glutaredoxin systems described in other organisms.  相似文献   

12.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical cysteine homologues of the classical selenocysteine-containing glutathione peroxidases. Although one of the sequences, peroxidase III, carries both putative mitochondrial and glycosomal targeting signals, the proteins are detectable only in the cytosol and mitochondrion of mammalian bloodstream and insect procyclic T. brucei. The enzyme is a trypanothione/tryparedoxin peroxidase as are the 2 Cys-peroxiredoxins of the parasite. Hydrogen peroxide, thymine hydroperoxide, and linoleic acid hydroperoxide are reduced with second order rate constants of 8.7 x 10(4), 7.6 x 10(4), and 4 x 10(4) m(-1) s(-1), respectively, and represent probable physiological substrates. Phosphatidylcholine hydroperoxide is a very weak substrate and, in the absence of Triton X-100, even an inhibitor of the enzyme. The substrate preference clearly contrasts with that of the closely related T. cruzi enzyme, which reduces phosphatidylcholine hydroperoxides but not H(2)O(2). RNA interference causes severe growth defects in bloodstream and procyclic cells in accordance with the peroxidases being essential in both developmental stages. Thus, the cellular functions of the glutathione peroxidase-type enzymes cannot be taken over by the 2 Cys-peroxiredoxins that also occur in the cytosol and mitochondrion of the parasite.  相似文献   

13.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Leishmania infantum glyoxalase II shows absolute specificity towards its trypanothione thioester substrate. In the previous work, we performed a comparative analysis of glyoxalase II structures determined by X-ray crystallography which revealed that Tyr291 and Cys294, absent in the human homologue, are essential for substrate binding. To validate this trypanothione specificity hypothesis we produced a mutant L. infantum GLO2 enzyme by replacing Tyr291 and Cys294 by arginine and lysine, respectively. This new enzyme is capable to use the glutathione thioester substrate, with kinetic parameters similar to the ones from the human enzyme. Substrate specificity is likely to be mediated by spermidine moiety binding, providing a primer for understanding the molecular basis of trypanothione specificity.  相似文献   

15.
16.
γδ-Dioxovalerate as a substrate for the glyoxalase enzyme system   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Crude gammadelta-dioxovalerate was synthesized from laevulinate by two different methods and was purified by Sephadex chromatography. Some analytical reactions of the compound are described. 2. gammadelta-Dioxovalerate is a substrate for glyoxalase I and the GSH derivative formed by this enzyme is hydrolysed by glyoxalase II to form d-alpha-hydroxyglutarate. The K(m) of glyoxalase I for gammadelta-dioxovalerate is 1.0x10(-3)m at pH5.8.3. The u.v.-absorption spectrum of thiol ester, synthesized enzymically from gammadelta-dioxovalerate and GSH by glyoxalase I, is almost identical with that for S-lactoylglutathione. Some optical properties of this thiol ester were measured. 4. Attempts to show reversibility of the glyoxalase system reactions with d-alpha-hydroxyglutarate as substrate were unsuccessful. 5. The possible metabolic role of the gammadelta-dioxovalerate reaction is discussed. It is suggested that one of the metabolic functions of the glyoxalase system may be to provide a mechanism for the entry of this compound into the tricarboxylic acid cycle.  相似文献   

17.
The glyoxalase system consisting of glyoxalase I (GloI) and glyoxalase II (GloII) constitutes a glutathione-dependent intracellular pathway converting toxic 2-oxoaldehydes, such as methylglyoxal, to the corresponding 2-hydroxyacids. Here we describe a complete glyoxalase system in the malarial parasite Plasmodium falciparum. The biochemical, kinetic and structural properties of cytosolic GloI (cGloI) and two GloIIs (cytosolic GloII named cGloII, and tGloII preceded by a targeting sequence) were directly compared with the respective isofunctional host enzymes. cGloI and cGloII exhibit lower K(m) values and higher catalytic efficiencies (k(cat)/K(m) ) than the human counterparts, pointing to the importance of the system in malarial parasites. A Tyr185Phe mutant of cGloII shows a 2.5-fold increase in K(m) , proving the contribution of Tyr185 to substrate binding. Molecular models suggest very similar active sites/metal binding sites of parasite and host cell enzymes. However, a fourth protein, which has highest similarities to GloI, was found to be unique for malarial parasites; it is likely to act in the apicoplast, and has as yet undefined substrate specificity. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested as P. falciparum Glo inhibitors were active in the lower nanomolar range. The Glo system of Plasmodium will be further evaluated as a target for the development of antimalarial drugs.  相似文献   

18.
Trypanosomes and Leishmania, the causative agents of several tropical diseases, lack the glutathione/glutathione reductase system but have trypanothione/trypanothione reductase instead. The uniqueness of this thiol metabolism and the failure to detect thioredoxin reductases in these parasites have led to the suggestion that these protozoa lack a thioredoxin system. As presented here, this is not the case. A gene encoding thioredoxin has been cloned from Trypanosoma brucei, the causative agent of African sleeping sickness. The single copy gene, which encodes a protein of 107 amino acid residues, is expressed in all developmental stages of the parasite. The deduced protein sequence is 56% identical with a putative thioredoxin revealed by the genome project of Leishmania major. The relationship to other thioredoxins is low. T. brucei thioredoxin is unusual in having a calculated pI value of 8.5. The gene has been overexpressed in Escherichia coli. The recombinant protein is a substrate of human thioredoxin reductase with a K(m) value of 6 microM but is not reduced by trypanothione reductase. T. brucei thioredoxin catalyzes the reduction of insulin by dithioerythritol, and functions as an electron donor for T. brucei ribonucleotide reductase. The parasite protein is the first classical thioredoxin of the order Kinetoplastida characterized so far.  相似文献   

19.
In mammalian red blood cells the metabolism of methylglyoxal, and some alpha-ketoaldehydes, takes place via two, generally, highly active enzymes, glyoxalase 1 and 2. The 1H NMR spin-echo spectra of horse erythrocytes, and the various reactants in the glyoxalase system, were characterized as a prelude to obtaining series of spectra in time courses of methylglyoxal metabolism. We characterized the kinetics of the enzyme system in red cells from a normal horse and also from one which had very low activity of glyoxylase 2. The kinetics of the reaction scheme, with methylglyoxal as the starting substrate, were obtained from 1H NMR spectra and analyzed with a computer model of the scheme. The most salient feature of the normal system was the very high feed-forward inhibition (KiHTA = 0.1 microM) of glyoxalase 2 by the hemithioacetal which is the substrate of glyoxalase 1. The glyoxalase-2-deficient red cells were used to test whether S-lactoylglutathione is transported from red cells via the glutathione-S-conjugate transporter; this transport appeared not to occur. Because methylglyoxal is extremely rapidly removed (half-life, approximately 5 min) from normal red cells, it is difficult to assess the effect of this compound on glycolysis but the slow decline evident in the deficient cells allowed a study of the effects on L-lactate production; no effects were apparent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号