首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of successive extracellular iontophoresis of acetylcholine (ACh) and atropine, and intracellular hyperpolarizing iontophoresis of cyclic GMP (cGMP) were studied in single neurons of the coronal-pericruciate cortex of awake cats. (a) Fifty-seven percent of the neurons that were tested responded to ACh with an increase in neuronal input resistance (Rm) and 50% responded to ACh with an increase in firing rate; 65% responded to cGMP with an increase in Rm and 60% responded to cGMP with an increase in firing rate. (b) After application of atropine, increases in Rm and firing rate associated with iontophoresis of ACh failed to recur. (c) Persistent increases in Rm following application of ACh accompanied by current-induced neuronal discharge were not diminished by subsequent application of atropine. (d) Atropine did not prevent increases in Rm and firing rate associated with intracellular iontophoresis of cGMP. (e) All cells tested with both ACh and cGMP that were shown initially to respond to extracellular ACh with increases in Rm were later shown to have comparable responses to cGMP.  相似文献   

2.
Liu H  Lin YH  Cheng JH  Cai Y  Yu JW  Ma J  Gao DM 《生理学报》2011,63(4):311-318
本文旨在观察低频电刺激脚桥核(pedunculopontine nucleus,PPN)对帕金森病(Parkinson’s disease,PD)模型大鼠丘脑腹外侧核(ventrolateral thalamic nucleus,VL)神经元自发放电活动的影响,以探讨低频电刺激PPN改善PD症状的作用机制。通过纹状体内注射6-羟多巴胺制备PD大鼠模型。采用在体细胞外记录、电刺激及微电泳方法,观察低频电刺激PPN、微电泳乙酰胆碱(acetylcholine,ACh)及其M型受体阻断剂阿托品(atropine,ATR)、γ-氨基丁酸(γ-aminobutyric acid,GABA)及其A型受体阻断剂荷包牡丹碱(bicuculline,BIC)对大鼠VL神经元放电频率的影响。结果显示,低频电刺激PPN可使正常大鼠和PD大鼠VL神经元自发放电频率增加。微电泳ACh对VL神经元具有兴奋和抑制两种作用,而微电泳ATR则主要抑制VL神经元,即使对被ACh抑制的神经元也产生抑制作用。微电泳GABA抑制VL神经元,而微电泳BIC则兴奋VL神经元。另外,在微电泳ACh的过程中微电泳GABA,被ACh兴奋或抑制的VL神经元放电频...  相似文献   

3.
在30只大鼠上,用多管微电极细胞外记录和离子微电泳方法,观察了乙酰胆碱(ACh)和阿托品对丘脑束旁核(Pf)神经元电活动的影响。结果表明,微电泳ACh可加强痛敏神经元的电活动,并使部分自发放电神经元对伤害性刺激产生反应。阿托品可以阻断ACh的上述作用。微电泳阿托品能减少痛敏神经元的电活动。这些结果提示,在Pf神经元的活动中,ACh可以直接作用于M受体发挥其兴奋作用。  相似文献   

4.
Acetylcholine (ACh) and norepinephrine (NE) have been identified previously as putative nociceptive neurotransmitters in the mesencephalic reticular formation (MRF) of the rat because they frequently mimic the change in neuronal firing (usually an increase) evoked by a noxious stimulus (NS). The purpose of this study was to determine if 1.) morphine (M) acts to prevent the increase in firing evoked by a NS by blocking the effects of either of these two neurotransmitters and 2.) if this effect is a specific narcotic effect. Using the technique of microiontophoresis in conjunction with extracellular recording, we located single units in the MRF in which 1.) neuronal firing was accelerated by a NS: 2.) M blocked this response; and 3.) either ACh or NE mimicked the effect of the NS. Neurons meeting these three criteria were studied further to determined if morphine would also block the response to either of the neurotransmitters and if this was a specific narcotic effect. We found that morphine blocked the increase in neuronal firing evoked by the NS and ACh or the NS and NE in over 50% of the cells meeting the above criteria. Some neurons were found in which both ACh and NE mimicked the NS and M blocked all three responses. This blockade of these neurotransmitters was a specific narcotic effect because it could be reversed by the systematic administration of naloxone. These data lead to the tentative hypothesis that M, acting via an opiate receptor, blocks the increase in neuronal firing evoked by a NS by blocking the postsynaptic effects of either ACh or NE. This may be one of the mechanisms by which morphine acts to produce analgesia.  相似文献   

5.
Acetylcholine (ACh) responses were elicited by ionophoresis from neurons, located in the medial pontine reticular formation, which were antidromically identified as having axons projecting in the reticulospinal tracts. Most neurons were silent at rest and could be caused to discharge at a regular, slow rate by a constant application of glutamate. ACh altered this slow rate of firing in 28 of 29 cells but showed three different patterns of effect: approximately one-third were excited, one-third were inhibited, and one-third showed biphasic inhibition-excitation. The ACh responses were not sensitive to atropine. These observations suggest that reticulospinal neurons have ACh receptors mediating both inhibition and excitation, perhaps located on different portions of the same neuron.  相似文献   

6.
The activity of single cells in deep regions of the medulla oblongata was observed both during CO2 inhalation and during the extracellular iontophoresis of hydrogen ions in peripheral chemoreceptor-denervated cats. All 53 neurons that fired in synchrony with some part of the ventilatory cycle showed increased firing during CO2 inhalation; yet none responded in a graded fashion to the extracellular application of hydrogen ions. Seventy-one of the 74 nonperiodic cells studied showed no response to CO2 inhalation. Of the 3 nonperiodic cells that did respond to CO2, 2 also responded in a graded fashion to the extracellular iontophoresis of hydrogen ions. It is concluded that the cell bodies of medullary neurons with respiratory periodicity are relatively insensitive to hydrogen ions. Further the paucity of hydrogen ion-sensitive cells found in deep areas of the medulla does not support the notion that medullary hydrogen ion chemoreception is largely achieved by structures located deep in the lower brainstem.  相似文献   

7.
Electrophysiological and biochemical studies suggest that VIP may exert a facilitating action in the neocortical local circuitry. In the present study, we examined the actions of VIP and VIP + norepinephrine (NE) on somatosensory cortical neuron responses to direct application of the putative transmitters acetylcholine (ACh) and gamma-aminobutyric acid (GABA). Spontaneous and transmitter-induced discharges of cortical neurons from halothane-anesthetized rats were monitored before, during and after VIP, NE and VIP + NE iontophoresis. In 57 VIP-sensitive cells tested, VIP application (5-70 nA) increased (n = 18), decreased (n = 36) or had biphasic actions (n = 3) on background firing rate. In a group of 20 neurons tested for NE + VIP, the combined effect of both peptide and bioamine was predominantly (70%) inhibitory. On the other hand, inhibitory and excitatory responses of cortical neurons to GABA (11 of 15 cases) and ACh (10 of 18 cases), respectively, were enhanced during VIP iontophoresis. Concomitant application of VIP and NE produced additive (n = 2) or more than additive (n = 3) enhancing effects on GABA inhibition. NE administration reversed or enhanced further VIP modulatory actions on ACh-induced excitation. These findings provide electrophysiological evidence that NE and VIP afferents may exert convergent influences on cortical neuronal responses to afferent synaptic inputs such that modulatory actions are anatomically focused within the cortex.  相似文献   

8.
A small collection of neurons in the dorsal lateral medulla, the paratrigeminal nucleus (Pa5), projects directly to the rostroventrolateral reticular nucleus (RVL). Bradykinin (BK) microinjections in the Pa5 produce marked pressor responses. Also, the Pa5 is believed to be a component of the neuronal substrates of the somatosensory response and the baroreflex arc. Considering the developing interest in the functional physiology of the Pa5, the present study was designed to characterize RVL neuronal activity in response to BK microinjections in the Pa5 as well as to phenylephrine-induced blood pressure increases in freely behaving rats. Of the 46 discriminated RVL neurons, 82% responded with a 180% mean increase in firing rate after BK application to the paratrigeminal nucleus, before the onset of the blood pressure increase. Thirty (79%) of the RVL BK-excited neurons were baroreceptor-inhibited units that responded with a 30% decrease in firing rate in response to a phenylephrine-produced increase of blood pressure. Twenty-seven (71%) units of the latter population displayed cardiac-cycle-locked rhythmic activity. The findings demonstrate a BK-stimulated functional connection between the Pa5 and RVL that may represent the neural pathway in the BK-mediated pressor response. This pathway may be relevant to baroreflex mechanisms since it relates to cardiovascular pressure-sensitive neurons.  相似文献   

9.
Characterization of NO/cGMP-Mediated Responses in Identified Motoneurons   总被引:3,自引:0,他引:3  
1. Nitric oxide (NO) is thought to play a neuromodulatory role in the nervous system of vertebrate and invertebrate species. In the hornworm Manduca sexta, NO-mediated signaling has been implicated in behavioral and developmental processes, but its exact function in neurons is unknown. In this study, we identify specific neurons in the CNS of Manduca larvae that accumulate cGMP in response to treatment with NO donors in the presence of cGMP-phosphodiesterase inhibitors. Subsets of these neurons were identified as motoneuron-12 (MN12) and intersegmental motoneurons (ISMs), which innervate dorsal oblique muscles of the larvae. 2. To investigate the physiological role of NO-evoked increases in cGMP in these motoneurons we performed intracellular recordings; we found that application of NO donors caused an increase in neuronal excitability that was characterized by an increase in the spontaneous firing frequency. When action potentials and EPSPs were blocked, NO treatment evoked a depolarization of the resting membrane potential and a decrease in the measured input resistance in both MN12 and the ISMs. 3. Additional experiments with MN12 showed that treatment with the cGMP analogue, 8-Br-cGMP mimicked the NO effect on the resting potential and the input resistance. Furthermore, MN12 incubation with the NOS inhibitor, L-NNA, resulted in a small hyperpolarization of the resting potential and an increase in the input resistance, and incubation with the sGC inhibitor, ODQ blocked the NO-evoked depolarization of MN12. Finally, NO treatment during voltage clamping of MN12 evoked an inward positive current. 4. Taken together, these results suggest that NO can act as a “gain control” of neuronal excitability, which might have an important role in insect behavior.  相似文献   

10.
Wang WZ  Wang XM  Rong WF  Wang JJ  Yuan WJ 《生理学报》2000,52(6):468-472
实验采用细胞外记录和微电泳等电生理方法,研究乙酰胆碱(ACh)对氨基甲酸乙酯麻醉的大鼠头端延髓腹外侧区(RVLM)前交感神经元放电频率的影响。在RVLM共记录到35个前交感神经元,微电泳ACh能增加其放电(P〈0.05),并且具有剂量依赖性。其中22个神经元微电泳M型胆碱受体阻断剂阿托品(ATR)后能明显降低前交感神经元的基础放电(P〈0.05)和完全阻断ACh引起的神经元兴奋作用;分别向其余7和  相似文献   

11.
Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.  相似文献   

12.
Ventilation is influenced by the acid-base status of the brain extracellular fluids (ECF). CO2 may affect ventilation independent of changes in H+. Whether the acidic condition directly alters neuronal firing or indirectly alters neuronal firing through changes in endogenous neurotransmitters remains unclear. In this work, ventriculocisternal perfusion (VCP) was used in anesthetized (pentobarbital sodium, 30 mg/kg) spontaneously breathing dogs to study the ventilatory effects of acetylcholine (ACh), eucapnic acidic (pH approximately 7.0) cerebrospinal fluid (CSF), and hypercapnic acidic (pH approximately 7.1) CSF in the absence and presence of atropine (ATR). Each animal served as its own control. Base line was defined during VCP with control mock CSF (pH approximately 7.4). With ATR (4.8 mM) there was an insignificant downward trend in minute ventilation (VE). ACh (6.6 mM) increased VE 53% (n = 12, P less than 0.01), eucapnic acidic CSF increased VE 41% (n = 12, P less than 0.01), and hypercapnic acidic CSF increased VE 47% (n = 6, P less than 0.01). These positive effects on ventilation were not seen in the presence of ATR. This suggests that acidic brain ECF activates ventilatory neurons through muscarinic cholinergic mechanisms. Higher concentrations of ACh increased ventilation in a concentration-dependent manner. Higher concentrations of ATR decreased ventilation progressively, resulting in apnea. The results suggest that ACh plays a significant role in the central augmentation of ventilation when the brain ECF is made acidic by either increasing CSF PCO2 or decreasing CSF bicarbonate.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation(LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as was the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]i). This effect was partially dependent on extracellular Ca2+. In calcium-free perfusion medium a substantial calcium signal remained which disappeared after loading of cortical neurons with 5 microM U-73122. BDNF-induce Ca2+ transients were completely blocked by K252a and partially blocked by Cd2+. The results demonstrate that BDNF can enhance synaptic transmission and induce directly a rise in [Ca2+]i that require two routes: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ mainly through voltage-dependent Ca2+ channels in cultured cortical neurons.  相似文献   

14.
The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.  相似文献   

15.
Extracellular recordings were made from the cat intact neocortex and guinea-pig neocortical slices during microiontophoretic application of amino acid neurotransmitters. Spike train autocorrelation analysis showed a high stability of firing patterns in the intact neocortex. When excitation of a cell was increased in a step-wise manner with glutamate iontophoresis only an enhancement of the rate of firing was observed. The rhythmic component, which was mainly due to periodic multiple discharges, remained up to the highest firing frequencies. In contrast to the in vivo observation, glutamate, aspartate or K+ iontophoresis in cortical slices resulted in firing pattern alternations (always from bursts or irregular activity to regular spike firing) as well as an increase in firing rate. In slices the periodic component was typically due to single-spike regularity and its frequency rose with an increase of firing rate. The comparison of autocorrelogram alternations in vivo and in vitro suggests that the temporal organization of spike trains in the intact cortex is under tight external control and is defined mainly by neuronal interactions, whereas virtually all the neurons in vitro are very sensitive to the same iontophoretic influences and their individual outputs easily change according to the excitation (depolarization) level. The coincidence of the lowest frequencies of single-spike regularity in the in vitro preparation (5–7 Hz and 8–10 Hz) with theta- and alpha-rhythms in the electroencephalogram (EEG), and with single unit firing rhythmicity in the whole brain, may represent the basis of a unit-circuit resonance and provide a high stability of these EEG-rhythms.Abbreviations ACF autocorrelation function - BFA background firing activity - EEG electroencephalogram  相似文献   

16.
Fan MX  Li X  Wang J  Cao YX  Shen LL  Zhu DN 《生理学报》2006,58(3):193-200
采用多管微电泳结合细胞外记录的方法研究了肾上腺髓质素(adrenomedullin,ADM)对大鼠延髓头端腹外侧区(rostral ventrolateral medulla,rVLM)压力反射敏感性神经元电活动的作用及其可能机制.结果显示在29个rVLM压力反射敏感神经元中,20个神经元在30、60和90 nA的电流微电泳大鼠ADM(rADM)过程中,放电频率由(10.8±2.7)spikes/s分别增加到(14.6±3.6)、(19.8±4.7)和(31.9±6.4)spikes/s(P<0.05,n=20).微电泳rADM特异性受体阻断剂人ADM(human ADM,hADM)(22-52)可明显减小神经元放电频率的增加幅度,比正常放电频率仅增加15.4%[(11.4±2.5)sipkes/s,P<0.05,n=10],而降钙素基因相关肽1(CGRP1)受体阻断剂hCGRP(8-37)对rADM兴奋性神经元电活动影响较小.在另外23个神经元中,10个神经元的放电频率在10、20和40 nA电流微电泳神经型NOS(nNOS)抑制剂7-NiNa过程中放电减少,由正常的(10.1±3.5)spikes/s分别减少为(7.5±2.5)、(5.3±2.1)和(3.1±1.4)spikes/s(P<0.05,n=10).在微电泳7-NiNa过程中同时微电泳rADM,则rADM增加神经元放电频率的效应减弱,增加幅度为基础水平的17%[(6.2±1.9)spikes/s].8个神经元在10、20和40 nA电流微电泳诱导型NOS抑制剂(iNOS)aminoguanidine(AG)过程中放电频率由(11.5±5.1)spikes/s增加到(17.8±5.6)、(22.5±6.3)和(29.1±6.4)spikes/s(P<0.05,n=8),rADM与AG同时微电泳时,AG对rADM本身增加神经元放电的效应无明显影响.上述结果提示,rADM在rVLM可通过其特异性受体或来源于nNOS的NO作用于压力反射敏感神经元,使其活动增强而发挥调节心血管活动的作用.  相似文献   

17.
目的:研究乙酰胆碱(ACh)受体在皮质酮(CORT)对大鼠头端延髓腹外侧区(RVLM)前交感神经元快速效应中的作用,探讨糖皮质激素在交感心血管活动调节中的非基因组机制。方法:本研究采用细胞外记录和微电泳等方法观察CORT对氨基甲酸乙酯麻醉大鼠RVLM前交感神经元的作用,观察分别给予ACh受体拮抗剂阿托品(ATR)、筒箭毒(d-TC)或六烃季铵(C6)后CORT对RVLM前交感神经元的影响。结果:在RVLM共记录到33个前交感神经元,CORT能导致25(76%)个前交感神经元快速兴奋,且具有剂量依赖性,余8个前交感神经元没有反应;其中被CORT兴奋的10个单位微电泳ART后神经元的放电明显下降,但对CORT导致的兴奋作用没有明显的影响。分别向7和6个被CORT兴奋的前交感神经元微电泳d-TC和C6后,单位放电没有变化,同时对CORT导致的兴奋作用无影响。结论:CORT对RVLM前交感神经元具有快速的兴奋作用,这种作用可能并不通过ACh受体介导。  相似文献   

18.
In Helix lucorum snail we studied the effects of ouabain, inhibitor of Na,K-pump, on the depression of cholinosensitivity in command neurons of withdrawal behavior and the role of the intracellular free Ca2+. The cellular analog of the negative learning (habituation) was used Transmembrane integral inward currents were recorded from the identified LPa2, LPa3, RPa3, and RPa2 neurons in ganglia preparation using two-electrode voltage clamp technique. Acetylcholine (ACh) was locally applied iontophoretically. Reduction of neuronal cholinosensitivity was estimated as a depth of depression of the ACh-induced inward current during rhythmic local application of ACh (interstimulus interval of 1-3 min) onto the somatic membrane. Bath application of ouabain (0.1 mM) produced an increase in depression in one group of neurons and its decrease in another group. After 60-150 min of spontaneous diffusion of a calcium ion chelator BAPTA (1 mM) from the intracellular microelectrode, ouabain produced only the increase in depression. If CaCl2 (100 mM) was added to the solution of the voltage-recording intracellular microelectrode, 60 min later ouabain produced only the reduction of the depression of the ACh current. The conclusion is drawn that the inhibition of the Na,K-pump by ouabain modifies the depression of neuronal cholinosensitivity in the cellular analog of habituation. The direction of the modulatory effect depends on the basal concentration of the intracellular free Ca2+.  相似文献   

19.
Large and protracted elevations of intracellular [Ca(2+)] and [Na(+)] play a crucial role in neuronal injury in ischemic conditions. In addition to excessive glutamate receptor activation, other ion channels may contribute to disruption of intracellular ionic homeostasis. During episodes of ischemia, extracellular [Ca(2+)] falls significantly. Here we report the emergence of an inward current in hippocampal CA1 pyramidal neurons in acute brain slices from adult mice upon reduction/removal of [Ca(2+)](e). The magnitude of the current was 100-300pA at -65mV holding potential, depending on intracellular constituents. The current was accompanied by intense neuronal discharge, observed in both whole-cell and cell-attached patch configurations. Sustained currents and increased neuronal firing rates were both reversed by restoration of physiological levels of [Ca(2+)](e), or by application of spermine (1mM). The amplitudes of the sustained currents were strongly reduced by raising intracellular [Mg(2+)], but not by extracellular [Mg(2+)] increases. Elevated intracellular ATP also reduced the current. This conductance is similar in several respects to the "calcium-sensing, non-selective cation current" (csNSC), previously described in cultured mouse hippocampal neurons of embryonic origin. The dependence on intracellular [ATP] and [Mg(2+)] shown here, suggests a possible role for this current in disruption of ionic homeostasis during metabolic stress that accompanies excessive neuronal stimulation.  相似文献   

20.
In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i). Whole‐cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP‐induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 487–501, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号