首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Low-energy laser irradiation (LELI) has been shown to promote skeletal muscle regeneration in vivo and to activate skeletal muscle satellite cells, enhance their proliferation and inhibit differentiation in vitro. In the present study, LELI, as well as the addition of serum to serum-starved myoblasts, restored their proliferation, whereas myogenic differentiation remained low. LELI induced mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) phosphorylation with no effect on its expression in serum-starved myoblasts. Moreover, a specific MAPK kinase inhibitor (PD098059) inhibited the LELI- and 10% serummediated ERK1/2 activation. However, LELI did not affect Jun N-terminal kinase (JNK) or p38 MAPK phosphorylation or protein expression. Whereas a 3-sec irradiation induced ERK1/2 phosphorylation, a 12-sec irradiation reduced it, again with no effect on JNK or p38. Moreover, LELI had distinct effects on receptor phosphorylation: it caused phosphorylation of the hepatocyte growth factor (HGF) receptor, previously shown to activate the MAPK/ERK pathway, whereas no effect was observed on tumor suppressor necrosis alpha (TNF-alpha) receptor which activates the p38 and JNK pathways. Therefore, by specifically activating MAPK/ERK, but not JNK and p38 MAPK enzymes, probably by specific receptor phosphorylation, LELI induces the activation and proliferation of quiescent satellite cells and delays their differentiation.  相似文献   

3.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

4.
Here we show that vascular endothelial growth factor (VEGF) mRNA expression is up-regulated in oncogene transformed rat liver epithelial (RLE) cell lines and that the extracellular signal-regulated kinase (ERK) and p38 kinase differentially regulate the oncogene-mediated stimulation of VEGF. The highest level of VEGF mRNA expression was observed in the v-H-ras transformed RLE cell line, followed by the v-raf and v-myc transformed lines. The PD98059 MEK inhibitor was used to block the ERK pathway and SB203580 inhibitor to block the p38 pathway. The parent and the v-H-ras transformed RLE cell lines showed up-regulation of VEGF RNA expression through the ERK pathway and down-regulation of VEGF through the p38 pathway. VEGF was regulated in a comparable manner in a human breast carcinoma cell line. In the v-raf and v-myc transformed RLE lines, positive regulation of VEGF was transduced through the p38 pathway. These findings suggest that (1) oncogenic ras differs from raf and myc in the recruitment of the MAPK signaling pathways for VEGF regulation; (2) that VEGF is regulated in ras transformed and human cancer cell lines in a positive and negative manner by the ERK and p38 signaling pathways.  相似文献   

5.
Activin A, a member of the transforming growth factor (TGF)-beta superfamily, is involved in the regulation of erythroid differentiation. Previous studies have shown that activin A inhibited the colony-forming activity of mouse Friend erythroleukemia cells, however, the mechanism remains unknown. First, we show herein that activin A induced the expression and activated the promoters of alpha-globin and zeta-globin in K562 cells, confirming that activin A induces erythroid differentiation in K562 cells. The p38 mitogen activated protein kinase (MAPK) inhibitor, SB203580, inhibited and the extracellular signal regulated kinase (ERK) inhibitor, PD98059, enhanced the expression and promoter activities of alpha-globin and zeta-globin by activin A, indicating that p38 MAPK and ERK are crucial for activin A-induced erythroid genes expression. Second, SB203580 inhibited the inhibitory effect of activin A on the colony-forming activity of K562 cells using the methylcellulose colony assay, indicating that activin A inhibits K562 colony formation by activating p38 MAPK. In addition, mitogenic cytokines SCF, IL-3, and GM-CSF induced colony formation of K562 cells that could be inhibited by PD98059 or enhanced by SB203580, respectively, indicating that these mitogenic cytokines induce K562 colony formation by activating ERK and inactivating p38 MAPK. Furthermore, activin A reduced the induction effect of these mitogenic cytokines on K562 colony formation in a dose-dependent manner. The inhibition of p38 MAPK reverted the inhibitory effect of activin A on mitogenic cytokine-mediated K562 colony formation. We conclude that activin A can regulate the same pathway via p38 MAPK to coordinate cell proliferation and differentiation of K562 cells.  相似文献   

6.
Osteosarcoma is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone. Although treatment modalities have been improved over the past decades, it is still a tumor with a high mortality rate in children and young adults. Based on histological considerations, osteosarcoma arises from impaired differentiation of these immature cells into more mature types and that correction of this impairment may reduce malignancy and increase the efficiency of chemotherapy. The purpose of this study was to determine the effect of specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK) and p38 on the differentiation of human osteosarcoma cell line SaOS-2 cells. We found that PD98059, a specific inhibitor of MEK, inhibited the serum-stimulated proliferation of SaOS-2 cells; whereas SB203580, a specific inhibitor of p38 MAPK, had little effect on it. SB203580 suppressed ALPase activity, gene expression of type I collagen, and expression of ALP and BMP-2 mRNAs; whereas PD98059 upregulated them dose dependently. In addition, immunoblot and immunostaining analysis revealed that phosphorylation of ERK was increased by treatment with SB203580; whereas PD98059 increased the phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteosarcoma cell differentiation is regulated by the balance between the activities of the ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteosarcoma cell differentiation, whereas the p38 pathway does so positively. MEK inhibitor may thus be a good candidate for altering the expression of the osteosarcoma malignant phenotype.  相似文献   

7.
Melanoma is one of the most therapy-resistant cancers. Activating mutations in BRAF and NRAS are the source of extracellular signal regulated protein kinase (ERK) pathway activation. We show that melanoma cell lines, originating in different metastatic sites, with BRAF or NRAS mutations, in addition to active mitogen activated protein kinase (MAPK)-ERK, also have highly activated stress activated protein kinase (SAPK)-p38. This is in direct contrast to carcinoma cells in which the activity of the two kinases appears to be mutually exclusive; high level of p38 activity inhibits, through a negative feedback, ERK activity and prevents tumorigenesis. Melanomas are insensitive to ERK inhibition by p38 and utilize p38-signaling pathway for migration and growth in vivo. We found a positive functional loop linking the high ERK activity to surface expression of alphaVbeta3-integrin. This integrin, by interacting with vitronectin, induces p38 activity and increases IL-8 production, enhancing cell migration. Because the negative loop from p38 to ERK is lost, the two kinases can remain simultaneously activated. Inhibition of ERK and p38 activities is more effective in blocking in vivo growth than inhibition of each kinase individually. Future therapies might have to consider targeting of both pathways.  相似文献   

8.
MAPKs are crucially involved in the regulation of growth and differentiation of a variety of cells. To elucidate the role of MAPKs in keratinocyte differentiation, activation of ERK, JNK, and p38 in response to stimulation with extracellular calcium was analyzed. We provide evidence that calcium-induced differentiation of keratinocytes is associated with rapid and transient activation of the Raf/MEK/ERK pathway. Stimulation of keratinocytes with extracellular calcium resulted in activation of Raf isozymes and their downstream effector ERK within 10-15 min, but did not increase JNK or p38 activity. Calcium-induced ERK activation differed in kinetics from mitogenic ERK activation by epidermal growth factor and could be modulated by alterations of intracellular calcium levels. Interestingly, calcium stimulation led to down-regulation of Ras activity at the same time that ERK activation was initiated. Expression of a dominant-negative mutant of Ras also did not significantly impair calcium-induced ERK activation, indicating that calcium-mediated ERK activation does not require active Ras. Despite the transient nature of ERK activation, calcium-induced expression of the cyclin-dependent kinase inhibitor p21/Cip1 and the differentiation marker involucrin was sensitive to MEK inhibition, which suggests a role for the Raf/MEK/ERK pathway in early stages of keratinocyte differentiation.  相似文献   

9.
The extracellular matrix metalloproteinase inducer (EMMPRIN) is significant in the regulation of matrix metalloproteinase (MMP) synthesis in atherosclerosis-related cells, and is possibly involved in the progression of atherosclerotic plaque. EMMPRIN expression is also up-regulated in PMA-induced THP-1 cells and is inhibited by resveratrol. However, it remains unclear how resveratrol inhibits EMMPRIN expression. We thus investigated the role of the MAPK signaling pathway in resveratrol inhibiting the up-regulation of EMMPRIN in PMA-induced THP-1 cells. We found that the ERK1/2 and p38 pathways, but not the JNK, are activated during the up-regulation of EMMPRIN expression. We also observed that while resveratrol suppresses the up-regulation of EMMPRIN, it also suppresses both the ERK1/2 and p38 pathways in a dose-dependent manner. Taken together, we established that it is through both the ERK1/2 and p38 MAPK pathways that resveratrol inhibits the expression of EMMPRIN in PMA-induced THP-1 cells.  相似文献   

10.
Multiple myeloma (MM) is a bone disease that affects many individuals. It was recently reported that macrophage inflammatory protein (MIP)-1α is constitutively secreted by MM cells. MIP-1α causes bone destruction through the formation of osteoclasts (OCs). However, the molecular mechanism underlying MIP-1α-induced OC formation is not well understood. In the present study, we attempted to clarify the mechanism whereby MIP-1α induces OC formation in a mouse macrophage-like cell line comprising C7 cells. We found that MIP-1α augmented OC formation in a concentration-dependent manner; moreover, it inhibited IFN-β and ISGF3γ mRNA expression, and IFN-β secretion. MIP-1α increased the expressions of phosphorylated ERK1/2 and c-Fos and decreased those of phosphorylated p38MAPK and IRF-3. We found that the MEK1/2 inhibitor U0126 inhibited OC formation by suppressing the MEK/ERK/c-Fos pathway. SB203580 induced OC formation by upregulating c-fos mRNA expression, and SB203580 was found to inhibit IFN-β and IRF-3 mRNA expressions. The results indicate that MIP-1α induces OC formation by activating and inhibiting the MEK/ERK/c-Fos and p38MAPK/IRF-3 pathways, respectively, and suppressing IFN-β expression. These findings may be useful in the development of an OC inhibitor that targets intracellular signaling factors.  相似文献   

11.
12.
13.
14.
SIP24 is an acute phase iron binding lipocalin physiologically expressed in vivo in developing cartilage by prehypertrophic/hypertrophic chondrocytes. Taking advantage of the chondrocytic cell line MC615 and using SIP24 as a marker we investigated the pathways active in cartilage differentiation and inflammation. MC615 cells were cultured as: (i) proliferating prechondrogenic cells expressing type I collagen (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. In proliferating cells the pathway PKC/ERK1, ERK2 was activated and SIP24 was not expressed while in differentiated cells the pathway p38/NF-kappaB was activated and SIP24 was expressed. Proliferating cells treated with inflammatory agents expressed a large amount of SIP24 and showed activation of p38/NF-kappaB pathway and inhibition of PKC/ERK1, ERK2 pathway indicating that in inflammation and differentiation the same factors are activated (p38, NF-kappaB) or inactivated (PKC, ERKs). Treatment of proliferating cells with the p38 specific inhibitor SB203580 inhibited the inflammation induced activation of p38 and the synthesis of SIP24. PMA treatment induced activation of PKC, inactivation of p38 and suppression of SIP24 synthesis, suggesting that PKC activation inhibits p38 activation. In differentiated hyperconfluent cells the same factors (p38/NF-kappaB/SIP24) are constitutively activated: treatment with inflammatory agents does not increase synthesis of SIP24 while treatment with SB203580 and with PMA does not repress activation of p38 nor synthesis of SIP24. We propose that the SIP24 stress related protein is expressed via p38 activation/NF-kappaB recruitment both in chondrocyte differentiation and inflammation and that a signaling pathway active in the acute phase response is physiologically activated in differentiation.  相似文献   

15.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

16.
Osteoclasts are multinucleated cells that differentiate from hematopoietic cells and possess characteristics responsible for bone resorption. To study the involvement of mitogen-activated protein kinases (MAPKs) in osteoclastogenesis of the murine monocytic cell line RAW264.7, which can differentiate into osteoclast-like cells in the presence of the receptor activator of nuclear factor kappa B ligand (RANKL), we treated the cells with specific inhibitors of p38 MAPK, PD169316 and SB203580, and specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK), U0126 and PD98059. Each inhibitor blocked differentiation into osteoclast-like cells when the cells were plated at the standard cell density (2000-4000 cells per well (96-well)). However, the effect of MEK inhibitors on osteoclastogenesis varied according to the initial cell density during culture, because cell growth was clearly inhibited by them. When the cells were plated at more than 8000 cells per well, marked enhancement and acceleration of the differentiation were observed. In addition, immunoblot analysis revealed that phosphorylation of ERK was increased by treatment with the p38 inhibitors, whereas the MEK inhibitors increased phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteoclastogenesis is regulated under a balance between ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteoclastogenesis while the p38 pathway does so positively. This is the first report that an inhibitor of signal transduction enhanced osteoclastogenesis.  相似文献   

17.
IL-27, a novel member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in positive and negative regulations of immune responses. We recently demonstrated that IL-27 induces Th1 differentiation through ICAM-1/LFA-1 interaction in a STAT1-dependent, but T-bet-independent mechanism. In this study, we further investigated the molecular mechanisms by focusing on p38 MAPK and ERK1/2. IL-27-induced Th1 differentiation was partially inhibited by lack of T-bet expression or by blocking ICAM-1/LFA-1 interaction with anti-ICAM-1 and/or anti-LFA-1, and further inhibited by both. Similarly, the p38 MAPK inhibitor, SB203580, or the inhibitor of ERK1/2 phosphorylation, PD98059, partially suppressed IL-27-induced Th1 differentiation and the combined treatment completely suppressed it. p38 MAPK was then revealed to be located upstream of T-bet, and SB203580, but not PD98059, inhibited T-bet-dependent Th1 differentiation. In contrast, ERK1/2 was shown to be located downstream of ICAM-1/LFA-1, and PD98059, but not SB203580, inhibited ICAM-1/LFA-1-dependent Th1 differentiation. Furthermore, it was demonstrated that STAT1 is important for IL-27-induced activation of ERK1/2, but not p38 MAPK, and that IL-27 directly induces mRNA expression of growth arrest and DNA damage-inducible 45gamma, which is known to mediate activation of p38 MAPK. Finally, IL-12Rbeta2 expression was shown to be up-regulated by IL-27 in both T-bet- and ICAM-1/LFA-1-dependent mechanisms. Taken together, these results suggest that IL-27 induces Th1 differentiation via two distinct pathways, p38 MAPK/T-bet- and ICAM-1/LFA-1/ERK1/2-dependent pathways. This is in contrast to IL-12, which induces it via only p38 MAPK/T-bet-dependent pathway.  相似文献   

18.
19.
20.
Inflammatory bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. Osteoprotegerin (OPG) is a soluble osteoblast-derived protein that influences bone resorption by inhibiting osteoclast differentiation and activation. In the present study, we demonstrate that interleukin-1beta and tumor necrosis factor alpha induce OPG mRNA production and OPG secretion by osteoblast-like MG-63 cells. Maximum induction of OPG secretion by either cytokine requires activation of the p38 mitogen activated protein kinase (MAPK) pathway but neither the p42/p44 (ERK) nor the c-Jun N-terminal MAPK pathways. Induction of OPG mRNA by either cytokine is also p38 MAPK dependent. Taken together, these data indicate that cytokine-induced OPG gene expression and protein secretion are differentially regulated by specific MAP kinase signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号