首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5th National Congress of the Italian Society of Virology (SIV) was attended by junior- and senior-level virologists to promote interactions and scientific collaborations among the different areas of Virology and allied sciences. The invited and selected lecturers covered the following topics: General Virology and Viral Genetics; Virus-host Interaction and Pathogenesis; Viral Oncogenesis; Viral Immunology and Vaccines; Anti-viral Therapy; Innovative Diagnostics; Viral Biotechnologies and Cell and Gene Therapy. As in the previous editions (Salata and Palù, 2004; Salata et al., 2005), a specific topic was thoroughly covered in a roundtable. This year the elected subject was "HIV: determinants of pathogenicity and clinical implications." The final program and the abstract book can be found at the web site http://www.siv-virologia.it. This report summarizes the lessons learned from the plenary lectures and the selected oral presentations of the 2005 meeting.  相似文献   

2.
The 9th annual meeting of the Italian Society for Virology (SIV) comprised seven plenary sessions focused on: General virology and viral genetics; Virus–Host interaction and pathogenesis; Viral oncology; Emerging viruses and zoonotic, foodborne, and environmental pathways of transmission; Viral immunology and vaccines; Medical virology and antiviral therapy; Viral biotechnologies and gene therapy. Moreover, four hot topics were discussed in special lectures: the Pioneer in human virology lecture regarding the control of viral epidemics with particular emphasis on the human immunodeficiency virus (HIV), the Pioneer in plant virology lecture focused on cell responses to plant virus infection, a Keynote lecture on the epidemiology and genetic diversity of Crimea–Congo Hemorrhagic Fever virus, and the G.B. Rossi lecture on the molecular basis and clinical implications of human cytomegalovirus tropism for endothelial/epithelial cells. The meeting had an attendance of about 160 virologists. A summary of the plenary lectures and oral selected presentations is reported. J. Cell. Physiol. 226: 285–287, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The 10th annual meeting of the Italian Society for Virology (SIV) comprised seven plenary sessions focused on: General virology and viral genetics; Virus-Host interaction and pathogenesis; Viral oncology; Emerging viruses and zoonotic, foodborne and environmental pathways of transmission; Viral immunology and vaccines; Medical virology and antiviral therapy; Viral biotechnologies and gene therapy. The meeting had an attendance of 143 virologists, about 60% were senior, and the other were young scientists. The submitted abstracts amounted to 88 and the abstracts selected for oral presentation were 41. Complete abstracts of oral and poster presentations are available at the web site www.siv-virologia.it. A summary of the plenary lectures and oral selected presentations is reported.  相似文献   

4.
The aim of the yearly National Congress of the Italian Society of Virology (SIV) is to promote the discussion between senior and younger researchers to improve the knowledge and scientific collaboration among the various areas of Virology. The invited and selected lecturers of the fourth National Congress of SIV covered the following topics: general Virology and viral Genetics; virus host interactions and pathogenesis; viral immunology and vaccines; emerging and re-emerging viral diseases; antiviral therapy; innovative diagnostics; viral biotechnologies and gene therapy. As in the previous edition (Salata and Palù, 2004 J Cell Physiol 199:171-173), a specific topic was thoroughly covered in a roundtable. In this edition the overviewed topic was HCV, from epidemiology and genetic variability to immunology and antiviral therapy. The final program can be found at the web site http://www.siv-virologia.it. A summary of the oral presentations of the 2004 meeting is reported.  相似文献   

5.
The 8th annual meeting of the Italian Society of Virology (SIV) took place in Orvieto, Italy from the 21st to the 23rd of September 2008. The meeting covered different areas of Virology and the scientific sessions focused on: general virology and viral genetics; viral oncology, virus–host interaction and pathogenesis; emerging viruses and zoonotic, foodborne and environmental pathways of transmission; viral immunology and vaccines; viral biotechnologies and gene therapy; medical virology and antiviral therapy. The meeting had an attendance of about 160 virologists from all Italy. In this edition, a satellite workshop on “Viral biotechnologies” was organized in order to promote the role of virologists in the biotechnological research and teaching fields. A summary of the plenary lectures and oral selected presentations is reported. J. Cell. Physiol. 219: 797–799, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Following the first two Frederick meetings on virus entry in 1997 [Cell 91 (1997) 721](1) and in 2000 [Cell 101 (2000) 697](2), further developments in our understanding of the multifactorial and multistage process of virus entry, and possible biomedical implications were presented and discussed in a lively fashion by leading scientists from around the world at the third Frederick meeting on the Cell Biology of Viral Entry (May 7-10, Frederick, MD) organized by R. Blumenthal (NCI-Frederick, NIH, Frederick) and E. Hunter (University of Alabama, Birmingham). Unlike the previous two meetings, non-enveloped viruses were not discussed this time, and the focus was how envelope glycoproteins (Envs) mediate entry into cells. Major topics included Env structure, virus receptors, entry intermediates, membrane fusion, fusion kinetics, and rafts. Virus envelope structures will be described in more detail here because the other topics are extensively discussed in the other chapters of this volume.  相似文献   

7.
Simian immunodeficiency virus (SIV) infection of macaques is a model for human immunodeficiency virus (HIV) infection. We have previously reported the construction and characterization of an SIV vector with a deletion in the nef gene (SIV(delta nef)) and expressing gamma interferon (SIV(HyIFN)) (L. Giavedoni and T. Yilma, J. Virol. 70:2247-2251, 1996). We now show that rhesus macaques vaccinated with SIV(HyIFN) have a lower viral load than a group similarly immunized with SIV(delta nef). Viral loads remained low in the SIV(HyIFN)-vaccinated group even though SIV expressing gamma interferon could not be isolated after 6 weeks postimmunization in these animals. All immunized and two naive control macaques became infected when challenged with virulent SIV(mac251), at 25 weeks postvaccination. In contrast to the two naive controls that died by 12 and 18 weeks postchallenge, all vaccinated animals remained healthy for more than 32 weeks. In addition, postchallenge cell-associated virus load was significantly lower in SIV(HyIFN)-immunized animals than in the group vaccinated with SIV(delta nef). These findings indicate that cytokine-expressing viruses can provide a novel approach for development of safe and efficacious live attenuated vaccines for AIDS.  相似文献   

8.
Following the first two Frederick meetings on virus entry in 1997 [Cell 91 (1997) 721]1 and in 2000 [Cell 101 (2000) 697]2, further developments in our understanding of the multifactorial and multistage process of virus entry, and possible biomedical implications were presented and discussed in a lively fashion by leading scientists from around the world at the third Frederick meeting on the Cell Biology of Viral Entry (May 7-10, Frederick, MD) organized by R. Blumenthal (NCI-Frederick, NIH, Frederick) and E. Hunter (University of Alabama, Birmingham). Unlike the previous two meetings, non-enveloped viruses were not discussed this time, and the focus was how envelope glycoproteins (Envs) mediate entry into cells. Major topics included Env structure, virus receptors, entry intermediates, membrane fusion, fusion kinetics, and rafts. Virus envelope structures will be described in more detail here because the other topics are extensively discussed in the other chapters of this volume.  相似文献   

9.
Antigenic epitopes on the major core (gag) protein of isolates of simian and human immunodeficiency virus (SIV and HIV) were compared using a panel of eleven mouse monoclonal antibodies (Mabs) that recognized nine distinct gag epitopes. Viral isolates used for comparison were HIV-1IIIb, HIV-2ROD, and SIV isolates from macaque (SIVmac), sooty mangabey (SIVsm-UCD), African green monkey (SIVagm), and stump-tailed macaque (SIVstm-UCD). The relatedness of the various HIV and SIV isolates, as determined by Mabs to core protein epitopes, paralleled that ascertained by genetic sequencing.  相似文献   

10.
AIDS dementia and encephalitis are complications of AIDS occurring most frequently in patients who are immunosuppressed. The simian immunodeficiency virus (SIV) model used in this study was designed to reproducibly induce AIDS in macaques in order to examine the effects of a neurovirulent virus in this context. Pigtailed macaques (Macaca nemestrina) were coinoculated with an immunosuppressive virus (SIV/DeltaB670) and a neurovirulent molecularly cloned virus (SIV/17E-Fr), and more than 90% of the animals developed moderate to severe encephalitis within 6 months of inoculation. Viral load in plasma and cerebrospinal fluid (CSF) was examined longitudinally to onset of AIDS, and viral load was measured in brain tissue at necropsy to examine the relationship of systemic and central nervous system (CNS) viral replication to the development of encephalitis. In all animals, plasma viral load peaked at 10 to 14 days postinfection and remained high throughout infection with no correlation found between plasma viremia and SIV encephalitis. In contrast, persistent high levels of CSF viral RNA after the acute phase of infection correlated with the development of encephalitis. Although high levels of viral RNA were found in the CSF of all macaques (six of six) during the acute phase, this high level was maintained only in macaques developing SIV encephalitis (five of six). Furthermore, the level of both viral RNA and antigen in the brain correlated with the severity of the CNS lesions. The single animal in this group that did not have CNS lesions had no detectable viral RNA in any of the regions of the brain. The results substantiate the use of CSF viral load measurements in the postacute phase of SIV infection as a marker for encephalitis and CNS viral replication.  相似文献   

11.
Emerging viral diseases pose global threat to public health.It is essential to build capacity to response and counteract against emerging viral diseases.Towards achieving this important goal of public health,the State Key Laboratory of Virology of China has organized the International Symposium on Emerging Viral Diseases since 2004.This symposium series has been held every two years at Wuhan Institute of Virology.The fifth symposium was held from October 24 to 27,2012.  相似文献   

12.
J Hua  B R Cullen 《Journal of virology》1997,71(9):6742-6748
Although the Nef proteins encoded by human immunodeficiency virus type 1 (HIV-1) and simian immuno-deficiency virus (SIV) are known to induce the efficient internalization and degradation of cell surface CD4, it remains unclear whether this process involves a direct interaction between Nef and CD4. Here, we report that CD4 downregulation by HIV-1 and SIV Nef requires distinct but overlapping target sites within the CD4 intracytoplasmic domain. In particular, mutation of a glutamic acid residue located at CD4 residue 405 or of arginine and methionine residues located, respectively, at residue 406 and 407 results in a mutant CD4 protein that is efficiently downregulated by HIV-1 Nef but refractory to downregulation by SIV Nef. However, both HIV-1 and SIV Nef require an isoleucine located at residue 410 and the dileucine motif found at CD4 residues 413 and 414. CD4 downregulation induced by the Nef protein encoded by HIV-2 is shown to require a CD4 target sequence that is similar to, but distinct from, that observed with SIV Nef. These data explain the previous finding that the murine CD4 protein, which has an alanine at residue 405, is refractory to downregulation by SIV, but not HIV-1, Nef (J. L. Foster, S.J. Anderson, A. L. B. Frazier, and J. V. Garcia, Virology 201:373-379, 1994). In addition, these observations provide strong genetic support for the hypothesis that the Nef-mediated downregulation of cell surface CD4 requires a direct Nef-CD4 interaction.  相似文献   

13.

Background

Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants.

Results

Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies.

Conclusions

These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding.  相似文献   

14.
We tested the ability of SIV to cause local and systemic infection in three rhesus monkeys after topical instillation of cell-free virus into the conjunctival cul-de-sac. Conjunctivitis or other signs of infection were monitored after inoculation. Conjunctiva were swabbed for virus culture and biopsied for PCR. Changes in lymphocyte subsets, seroconversion, antigenemia, and virus isolation from PBL were assessed systemically postinoculation. Viral DNA was detected in conjunctival biopsy by PCR in one of three animals that later developed systemic infection. The other two animals remained uninfected. These data demonstrate that the conjunctiva is a route by which SIV (and perhaps HIV) may cause systemic infection.  相似文献   

15.
Clinical and in vitro studies have shown that activity of the autonomic nervous system (ANS) can stimulate lentivirus replication. To define the potential anatomical basis for this effect, we analyzed the spatial relationship between catecholaminergic neural fibers and sites of simian immunodeficiency virus (SIV) replication in lymph nodes from rhesus macaques experimentally infected with SIVmac251. Viral replication was mapped by in situ hybridization for SIV env, gag, and nef RNA, and catecholaminergic varicosities from the ANS were mapped by sucrose phosphate glyoxylic acid chemofluorescence. Spatial statistical analyses showed that the likelihood of active SIV replication increased by 3.9-fold in the vicinity of catecholaminergic varicosities (P < 0.0001). The densities of both ANS innervation and SIV replication differed across cortical, paracortical, and medullary regions of the lymph node, but analyses of each region separately continued to show increased replication of SIV adjacent to catecholaminergic varicosities. Ancillary analyses ruled out the possibility that SIV-induced alterations in lymph node architecture might create a spurious spatial association. These data support human clinical studies and in vitro molecular analyses showing that catecholamine neurotransmitters from the ANS can increase lentiviral replication by identifying a specific anatomic context for interactions between ANS neural fibers and replication of SIV in lymphoid tissue.  相似文献   

16.
17.
Nonhuman primate-simian immunodeficiency virus (SIV) models are powerful tools for studying the pathogenesis of human immunodeficiency virus type 1 (HIV-1) in the brain. Our laboratory recently isolated a neuropathogenic viral swarm, SIVsmH804E, a derivative of SIVsmE543-3, which was the result of sequential intravenous passages of viruses isolated from the brains of rhesus macaques with SIV encephalitis. Animals infected with SIVsmH804E or its precursor (SIVsmH783Br) developed SIV meningitis and/or encephalitis at high frequencies. Since we observed macaques with a combination of meningitis and encephalitis, as well as animals in which meningitis or encephalitis was the dominant component, we hypothesized that distinct mechanisms could be driving the two pathological states. Therefore, we assessed viral populations in the meninges and the brain parenchyma by laser capture microdissection. Viral RNAs were isolated from representative areas of the meninges, brain parenchyma, terminal plasma, and cerebrospinal fluid (CSF) and from the inoculum, and the SIV envelope fragment was amplified by PCR. Phylogenetic analysis of envelope sequences from the conventional progressors revealed compartmentalization of viral populations between the meninges and the parenchyma. In one of these animals, viral populations in meninges were closely related to those from CSF and shared signature truncations in the cytoplasmic domain of gp41, consistent with a common origin. Apart from magnetic resonance imaging (MRI) and positron-emission tomography (PET) imaging, CSF is the most accessible assess to the central nervous system for HIV-1-infected patients. However, our results suggest that the virus in the CSF may not always be representative of viral populations in the brain and that caution should be applied in extrapolating between the properties of viruses in these two compartments.  相似文献   

18.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

19.
The World Society for Virology (WSV) was founded and incorporated as a nonprofit organization in the United States in 2017. WSV seeks to strengthen and support both virological research and virologists who conduct research of viruses that affect humans, other animals, plants, and other organisms. One of the objectives of WSV is to connect virologists worldwide and support collaboration. Fulfilling this objective, virologists from fourteen countries in North America, Europe, Africa, Asia, and the Middle East met on 25–27th August 2019 in Stockholm, Sweden at the Karolinska University Hospital for the first Committee Meeting of WSV. This meeting included compelling keynote and honorary speeches and a series of 18 scientific talks were given encompassing a diverse array of subjects within virology. Followed by the scientific session, a business session was held where multiple aspects and next steps of the society were discussed and charted out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号