首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Previous studies have shown that repeated application of TRAIL induces acquired resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Using human prostate adenocarcinoma DU-145 and human pancreatic carcinoma MiaPaCa-2 cells as a model, we now demonstrate for the first time that two states of acquired TRAIL resistance can be developed after TRAIL treatment. Data from survival assay and Western blot analysis show that acquired TRAIL resistance was developed within 1 day and gradually decayed within 6 days after TRAIL treatment in both cell lines. After TRAIL treatment, the level of Bcl-xL increased and reached a maximum within 2 days and gradually decreased in both cell lines. Bcl-xL-mediated development of acquired TRAIL resistance was suppressed by knockdown of Bcl-xL expression. Protein interaction assay revealed that during the development of TRAIL resistance, Bcl-xL dissociated from Bad and then associated with Bax. Overexpression of mutant-type Bad (S136A), which prevents this dissociation, partially suppressed the development of acquired TRAIL resistance. Thus, our results suggest that (a) dissociation of Bad from Bcl-xL and (b) an increase in the intracellular level of Bcl-xL are responsible for development of acquired TRAIL resistance.  相似文献   

2.
We previously reported two modes of development of acquired TRAIL resistance: early phase and late phase [1]. In these studies, we observed that greater Akt activity and the expression of Bcl-xL were related mainly to the late phase of acquired TRAIL resistance.Recently we became aware of a possible mechanism of early phase TRAIL resistance development through internalization and degradation of TRAIL receptors (DR4 and DR5). Our current studies demonstrate that TRAIL receptors rapidly diminish at the membrane as well as the cytoplasm within 4 h after TRAIL exposure, but recover completely after one or two days. Our studies also reveal that Cbl, a ubiquitously expressed cytoplasmic adaptor protein, is responsible for the rapid degradation of TRAIL receptors; Cbl binds to them and induces monoubiquitination of these receptors concurrent with their degeneration soon after TRAIL exposure, creating the early phase of acquired TRAIL resistance.  相似文献   

3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in many transformed cells, suggesting TRAIL as an ideal candidate for cancer gene therapy. A main obstacle in cancer therapy is intrinsic or acquired therapy resistance of malignant cells. To study induction of resistance against TRAIL, we generated lentiviral vectors allowing efficient TRAIL expression and apoptosis induction in a variety of human cancer cell lines. Within days upon TRAIL overexpression, cells became resistant towards TRAIL, but not to CD95 ligation or DNA damage by cisplatin. Cell surface expression of TRAIL receptors 1 and 2 was completely abrogated in resistant cells due to intracellular retention of the receptors by TRAIL. SiRNA directed against TRAIL resensitized the resistant cells by restoring cell surface expression of TRAIL receptors. These findings represent a novel resistance mechanism towards TRAIL, specifically caused by TRAIL overexpression, and question the use of TRAIL expression in tumor-cell targeting gene therapy.  相似文献   

4.
Glioblastoma (GBM) is the most aggressive form of primary brain tumour, with dismal patient outcome. Treatment failure is associated with intrinsic or acquired apoptosis resistance and the presence of a highly tumourigenic subpopulation of cancer cells called GBM stem cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising novel therapy for some treatment-resistant tumours but unfortunately GBM can be completely resistant to TRAIL monotherapy. In this study, we identified Mcl-1, an anti-apoptotic Bcl-2 family member, as a critical player involved in determining the sensitivity of GBM to TRAIL-induced apoptosis. Effective targeting of Mcl-1 in TRAIL resistant GBM cells, either by gene silencing technology or by treatment with R-roscovitine, a cyclin-dependent kinase inhibitor that targets Mcl-1, was demonstrated to augment sensitivity to TRAIL, both within GBM cells grown as monolayers and in a 3D tumour model. Finally, we highlight that two separate pathways are activated during the apoptotic death of GBM cells treated with a combination of TRAIL and R-roscovitine, one which leads to caspase-8 and caspase-3 activation and a second pathway, involving a Mcl-1:Noxa axis. In conclusion, our study demonstrates that R-roscovitine in combination with TRAIL presents a promising novel strategy to trigger cell death pathways in glioblastoma.  相似文献   

5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In the previous study [Yoo and Lee, 2007], we have reported that hyperthermia could enhance the cytotoxicity of TRAIL-induced apoptosis. We observed in human colorectal cancer cell line CX-1 that TRAIL-induced apoptotic death and also that mild hyperthermia promoted TRAIL-induced apoptotic death through caspase activation and cytochrome-c release. Although its effects in vivo are not clear, hyperthermia has been used as an adjunctive therapy for cancer. Hyperthermia is often accompanied by chemotherapy to enhance its effect. In this study, CX-1 colorectal adenocarcinoma cells were treated with TRAIL concurrently with hyperthermia and oxaliplatin or melphalan. To evaluate the cell death effects on tumor cells via hyperthermia and TRAIL and chemotherapeutic agents, FACS analysis, DNA fragmentation, and immunoblottings for PARP-1 and several caspases and antiapoptotic proteins were performed. Activities of casapse-8, caspase-9, and caspase-3 were also measured in hyperthermic condition. Interestingly, when analyzed with Western blot, we detected little change in the intracellular levels of proteins related to apoptosis. Clonogenic assay shows, however, that chemotherapeutic agents will trigger cancer cell death, either apoptotic or non-apoptotic, more efficiently. We demonstrate here that CX-1 cells exposed to 42 degrees C and chemotherapeutic agents were sensitized and died by apoptotic and non-apoptotic cell death even in low concentration (10 ng/ml) of TRAIL.  相似文献   

6.
TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.  相似文献   

7.
We investigated the role of galectin-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic death in human breast carcinoma BT549 cells. We observed that parental galectin-3 null BT549 cells (BT549(par)) as well as control vector transfected (BT549(neo)) cells were resistant to TRAIL, while galectin-3 cDNA-transfected BT549 cells (BT549(gal-3)) were sensitive to TRAIL. Data from flow cytometry and immunoblotting analyses reveal that reconstitution of galectin-3 promoted cell death and PARP cleavage as well as caspase (-8, -9, and -3) activation during TRAIL treatment. However, unlike TRAIL treatment, galectin-3 transfectants were resistant to UV-B-induced PARP cleavage. Data from cDNA array analysis show that galectin-3 did not significantly enhance or reduce any apoptosis-related gene expression. Moreover, although galectin-3 restored pre-mRNA splicing activity and resulted in elevation of FLIPs protein, experiments with FLIPs cDNA-transfected cells show that overexpression of FLIPs did not sensitize cells to TRAIL. Interestingly, BT549(gal-3) cells demonstrated a approximately 2-fold increase in total glutathione content as well as a approximately 5-fold increase in GSSG content in comparison to BT549(par) and BT549(neo) cells, suggesting that galectin-3 overexpression may alter intraceullular oxidation/reduction reactions affecting the metabolism of glutathione and other thiols. In addition, galectin-3 overexpression inactivated Akt by dephosphorylation. Finally, overexpression of constitutively activated Akt protected BT549(gal-3) cells from TRAIL-induced cytotoxicity. Taken together, our data suggest that galectin-3-enhanced TRAIL-induced cytotoxicity is mediated through dephosphorylation of Akt, possibly through a redox-dependent process.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising agent for medical applications because it induces apoptosis selectively in a variety of cancer cells without toxicity to normal human cells. However, its therapeutic potential has been limited by the existence of several cancer cells with TRAIL resistance. TRAIL resistance results from a variety of mechanisms, which occur at various points in the cellular signaling pathways. In this study, we demonstrate that ALS2CR7 (CDK15) can mediate resistance to TRAIL. We also demonstrate that cell viability of TRAIL sensitive HCT116 and MDA-MB-231 cells increased after TRAIL treatment in ALS2CR7 transfected cancer cells compared with vector transfected cancer cells. Furthermore, cell viability was decreased by TRAIL treatment after knockdown with ALS2CR7 siRNA in TRAIL resistant HT29 and MCF-7 cells. We also show that the activated form of apoptotic proteins such as caspase-3, -8 and -9 and PARP increased after TRAIL treatment in the control group, but decreased in the ALS2CR7 transfected group. The expression of survival proteins such as bcl2 and survivin in TRAIL sensitive cancer cells increased in the ALS2CR7 transfected group, but decreased in TRAIL resistant cancer cells treated with ALS2CR7 siRNA. Other survival proteins such as FLIP and XIAP were not affected. ALS2CR7 appears to bind with only survivin, and not bcl2. The phospho-survivin (Thr34) critical in drug resistance was increased by transfection with ALS2CR7, but the expression of death receptors such as DR4 and DR5 was not affected. ALS2CR7 did not bind with any of the death receptors in our study. In summary, our results suggest that ALS2CR7 confers TRAIL resistance to cancer cells via phosphorylation of survivin.  相似文献   

9.
Previously we demonstrated that two consecutive in vitro irradiations of MCA 102 cells with high doses of UVC light (610 and 457 J/m2) resulted in a selection of a permanent line MCA 102UV that manifested high sensitivity to natural cell-mediated cytotoxicity (NCMC). In the present study analysis of the effector cells involved in lysis of these tumor cells was performed by comparing the cytotoxicity of normal spleen cells which mediated both NK and NC cell activity with (a) normal spleen cells in which NC activity was neutralized by anti-TNF Abs (NK+,NC-), (b) NK-depleted or NK-deficient spleen cells (NK-,NC+), and (c) NK-deficient or -depleted spleen cells with NC activity neutralized by anti-TNF Abs (NK-,NC-). Results of these studies indicate that lysis of the original MCA 102 tumor cells was relatively low and was mediated by NC cells. UV irradiation significantly increased MCA 102 tumor cell sensitivity to lysis by both NK and NC cells. Analysis of the mechanisms involved in UV-induced NK sensitivity revealed that UV irradiation increased tumor cell susceptibility to lytic NK-derived granules. NC sensitivity of MCA 102UV tumor cells was associated with their increase in sensitivity to TNF and selection of MCA 102UV cells for resistance to rTNF resulted in a decrease in their susceptibility to NC cells. To determine how fast UV-induced sensitivity to NCMC and rTNF can be established, 51Cr-labeled MCA 102 cells were irradiated in vitro with 38-304 J/m2 of UVC light and their sensitivity to lysis by spleen cells and rTNF was tested immediately in an 18-hr cytotoxicity assay. UV treatment with the same doses was repeated 12 days later. The data obtained showed that tumor cell sensitivity to NCMC and TNF appeared shortly after UV irradiation, was stable, and was further substantially augmented by the second round of UV treatment. Thus, in vitro UV irradiation of tumor cells could be an effective modulator of tumor cell sensitivity to TNF-dependent and TNF-independent cell-mediated cytotoxicity.  相似文献   

10.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL/APO-2L), a member of the tumor necrosis factor (TNF) gene family, is considered as one of the most promising cancer therapeutic agents due to its ability to selectively kill tumor cells. Although microenvironments of solid tumors (hypoxia, nutrient deprivation, and low pH) often affect the effectiveness of chemotherapy, few studies have been reported on the relationship between tumor microenvironments and TRAIL. In this study, we investigated whether low extracellular pH affects TRAIL-induced apoptotic death. When human prostate carcinoma DU145 cells were treated with 200 ng/ml His-tagged TRAIL for 4 h, the survival was approximately 10% at pH 6.3-6.6 and 61.3% at pH 7.4. Similar results were observed in human colorectal carcinoma CX-1 cell line. The TRAIL-mediated activation of caspase, cytochrome c release, and poly (ADP-ribose) polymerase (PARP) cleavage was promoted at low extracellular pH. Immunoprecipitation followed by western blot analysis shows that low extracellular pH enhances the association of truncated Bid with Bax during treatment with TRAIL. Western blot analysis also shows that the low extracellular pH-enhanced TRAIL cytotoxicity does not involve modulation of the levels of TRAIL receptors (DR4, DR5, and DcR2), FLIP, inhibitor of apoptosis (IAP), and Bcl-2. Overexpression of Bcl-2 effectively prevented low extracellular pH-augmented TRAIL cytotoxicity. Taken together, we propose that TRAIL-mediated cytotoxicity is greatly enhanced in low pH environments by promoting caspase activation.  相似文献   

11.
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is a promising antitumor therapy. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL, highlighting the need for strategies to overcome TRAIL resistance. Here we show that in combination with phenethyl isothiocyanate (PEITC), exposure to TRAIL induced apoptosis in TRAIL-resistant glioma cells. Subtoxic concentrations of PEITC significantly potentiated TRAIL-induced cytotoxicity and apoptosis in glioma cells. PEITC dramatically upregulated DR5 receptor expression but had no effects on DR4 receptor. PEITC enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and the upregulation of DR5 receptors through actions on the ROS-induced-p53.  相似文献   

12.
TNF-alpha-related apoptosis-inducing ligand (TRAIL) is characterized by its preferential induction of apoptosis of tumor cells but not normal cells. Dendritic cells (DCs), besides their role as APCs, now have been demonstrated to exert cytotoxicity or cytostasis on some tumor cells. Here, we report that both human CD34(+) stem cell-derived DCs (CD34DCs) and human CD14(+) monocyte-derived DCs (MoDCs) express TRAIL and exhibit cytotoxicity to some types of tumor cells partially through TRAIL. Moderate expression of TRAIL appeared on CD34DCs from the 8th day of culture and was also seen on freshly isolated monocytes. The level of TRAIL expression remained constant until DC maturation. TRAIL expression on immature CD34DCs or MoDCs was greatly up-regulated after IFN-beta stimulation. Moreover, IFN-beta could strikingly enhance the ability of CD34DCs or MoDCs to kill TRAIL-sensitive tumor cells, but LPS did not have such an effect. The up-regulation of TRAIL on IFN-beta-stimulated DCs partially contributed to the increased cytotoxicity of DCS: Pretreatment of TRAIL-sensitive tumor cells with caspase-3 inhibitor could significantly increase their resistance to the cytotoxicity of IFN-beta-stimulated DCS: In contrast, NF-kappaB inhibitor could significantly increase the sensitivity of tumor cells to the killing by nonstimulated or LPS-stimulated DCS: Our studies demonstrate that IFN-beta-stimulated DCs are functionally cytotoxic. Thus, an innate mechanism of DC-mediated antitumor immunity might exist in vivo in which DCs act as effectors to directly kill tumor cells partially via TRAIL. Subsequently, DCs act as APCs involved in the uptake, processing, and presentation of apoptotic tumor Ags to cross-prime CD8(+) CTL cells.  相似文献   

13.
BACKGROUND: In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. MATERIAL AND METHODS: DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic survival, colony assay on methylcellulose was used. RESULTS: Ionizing radiation caused significantly enhanced positivity of DR5 receptors 24 h after irradiation with high doses (6 and 8 Gy). An increase of DR5 receptor positivity after a dose of 2 Gy was not statistically significant and application of TRAIL 48 h after irradiation did not increase the apoptosis induction. However, a decrease of radiation-induced G(2) phase arrest and an increase of apoptosis were observed when TRAIL was applied 16 h before irradiation with the dose of 2 Gy. Incubation with 6 microg/l TRAIL for 16 h reduced D(0) value from 2.9 Gy to 1.5 Gy. The induction of apoptosis by TRAIL was accompanied by Bid cleavage and a decrease of antiapoptotic Mcl-1 16 h after incubation with TRAIL. CONCLUSION: TRAIL in concentration of 6 microg/l applied 16 h before irradiation by the dose of 1.5 Gy caused the death of 63% of clonogenic tumor cells, similarly as the dose of 2.9 Gy alone, which is in good correlation with the enhanced apoptosis induction.  相似文献   

14.
Protein kinase CK2 has diverse functions promoting and maintaining cancer phenotypes. We investigated the effect of CK2 inhibition in lung cancer cells with T790M-mediated resistance to the EGFR-TK inhibitor. Resistant sublines of PC-9 to gefitinib (PC-9/GR) and erlotinib (PC-9/ER) were established by previous study, and T790M secondary mutation was found in both resistant sublines. A decrease of EGFR by siRNA treatment effectively controlled the growth of resistant cells, thus suggesting that they still have EGFR-dependency. CX-4945, a potent and selective CK2 inhibitor, induced autophagy in PC-9/GR and PC-9/ER, and which was supported by the induction of autophagic vacuoles and microtubule-associated protein 1 light chain 3 (LC3) expression, and the increase of punctate fluorescent signals in resistant cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. However, the withdrawal of CX-4945 led to the recovery of cancer cells with autophagy. We found that the induction of autophagy by CX-4945 in both resistant cells was CK2 dependent by using small interfering RNA against CK2. The treatment with CX-4945 alone induced a minimal growth inhibition in resistant cells. However, combined treatment of CX-4945 and EGFR-TKI effectively inhibited cancer-cell proliferation and induced apoptosis. CX-4945 increased the translocation of EGFR from the cell surface into the autophagosome, subsequently leading to the decrease of EGFR while inhibition of autophagy by 3MA or Atg7-targeted siRNA pretreatment reduced the decrease of EGFR by CX-4945. Accordingly, apoptosis by a combination of CX-4945 and EGFR-TKI was suppressed by 3MA or Atg7-targeted siRNA pretreatment, thus suggesting that autophagosome-mediated EGFR down-regulation would have an important role regarding apoptotic cell death by EGFR-TKI. Combined treatment of the CK2 inhibitor and EGFR-TKI may be a promising strategy for overcoming T790M-mediated resistance.  相似文献   

15.
TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.  相似文献   

16.
The transformation and mutagenic potential of porphyrin photodynamic therapy has been examined in mammalian cells. The mutagenic frequency in Chinese hamster cells at the Na+/K+ ATPase locus was measured by resistance to ouabain following treatment with either photodynamic therapy (PDT) or UV irradiation. The C3H 10T 1/2 mouse embryo cell system was used to document the transformation frequency following PDT, UV irradiation, gamma irradiation or exposure to 3-methylcholanthrene (MCA). Treatments with UV irradiation were effective in producing mutants resistant to ouabain, and treatments with UV irradiation, gamma irradiation and MCA generated transformants at frequencies comparable to those which are reported in the literature. However, PDT treatment conditions (which produced a full range of cytotoxicity) did not induce any mutagenic or transformation activity above background levels.  相似文献   

17.
肿瘤细胞抗TRAIL凋亡诱导的分子机制   总被引:1,自引:0,他引:1  
肿瘤坏死因子相关的凋亡诱导配体(tumornecrosisfactor-relatedapoptosis-inducingligand,TRAIL)是肿瘤坏死因子(tumornecrosisfactor,TNF)超家族的成员之一,它能选择性诱导肿瘤细胞凋亡,对大多数正常细胞无杀伤作用。研究表明,某些恶性肿瘤抵抗TRAIL诱导的凋亡,且TRAIL重复作用使一些TRAIL敏感的细胞产生获得性抗性,这是TRAIL应用于肿瘤治疗的重大障碍。现对与TRAIL凋亡诱导通路直接相关的抗TRAIL机制及由Akt等途径介导的抗性分子机制进行综述。  相似文献   

18.
TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many types of cancer cells. TRAIL is considered a therapeutic target, therefore, it was of interest to examine molecular mechanisms that may modulate sensitivity to TRAIL signaling in prostate cancer cells. LNCaP cells were found to be relatively resistant to TRAIL induced cell death while PC3 cells were sensitive. PI3-kinase (PI3 K) inhibitors were able to render LNCaP cells sensitive to TRAIL but conferred resistance to PC3 cells. PI3 K inhibitors were associated with an increase in p21waf1, cip1 expression in PC3 cells where as p21 decreases in LNCaP cells suggesting that p21 may impart TRAIL resistance. Since androgen receptor (AR) signaling can be modulated by AKT, and p21 is an AR responsive gene, the impact of PI3 K inhibition on TRAIL sensitivity was evaluated in AR transfected PC3 cells (PC3AR). The expression of AR was significantly downregulated by PI3 K inhibition in LNCaP cells, which have an intact AR signaling axis. PC3AR cells expressed higher levels of p21 protein and were relatively resistant to TRAIL compared to control cells. Finally, using adenoviral p21 gene transfer we directly demonstrated that p21 can confer resistance to TRAIL-induced cell death. These results suggest that TRAIL resistance is not regulated simply by a PI3 K/AKT survival pathway associated with inactivating PTEN mutations but may also be modulated by downstream AR responsive targets such as p21. These findings may have significant clinical implications for the utility of TRAIL in the management of prostate cancer.  相似文献   

19.
Induction of apoptosis in cancer cells with chemotherapy and radiation treatment is a major strategy in cancer therapy at present. Nevertheless, innate or acquired resistance has been an obstacle for conventional clinical therapy. TNF-related apoptosis inducing ligand (TRAIL/Apo-2L) is a typical member of the TNF ligand family that induces apoptosis through activating the death receptors. In recent years, considerable attention has been focused on the potential benefits of TRAIL in cancer therapy, as the majority of cancer cells are sensitive to TRAIL-induced apoptosis, while most normal cells are TRAIL-resistant. Furthermore, the use of TRAIL in combination with chemotherapeutic agents or irradiation strengthens its apoptotic effects. In this review, we will discuss the regulation mechanism of TRAIL-induced apoptosis and the molecular basis of the synergies created by its use in combination with chemotherapeutic agents and irradiation. We also analyze in detail that TRAIL may be cytotoxic, as this is a potential obstacle to its development for being used in cancer therapy.  相似文献   

20.
TNF-related apoptosis-inducing ligand (TRAIL) is a promising cytokine for killing tumor cells. However, a number of studies have demonstrated that different cancer cells resist TRAIL treatment and, moreover, TRAIL can promote invasion and metastasis in resistant cells. Here we report that TRAIL rapidly activates caspase-8 in a panel of non-small-cell lung carcinomas (NSCLCs). Adenocarcinomas derived from the lung in addition to high caspase-8 expression are characterized by increased expression of DR4 compared with adjacent non-neoplastic tissues. Blocking DR4 or lowering caspase-8 expression significantly reduced apoptosis in NSCLC cell lines, indicating the importance of DR4 and signifying that higher levels of caspase-8 in lung adenocarcinomas make them more susceptible to TRAIL treatment. Despite rapid and robust initial responsiveness to TRAIL, surviving cells quickly acquired resistance to the additional TRAIL treatment. The expression of cellular-FLIP-short (c-FLIPS) was significantly increased in surviving cells. Such upregulation of c-FLIPS was rapidly reduced and TRAIL sensitivity was restored by treatment with cycloheximide. Silencing of c-FLIPS, but not c-FLIP-long (c-FLIPL), resulted in a remarkable increase in apoptosis and significant reduction of clonogenic survival. Furthermore, chelation of intracellular Ca2+ or inhibition of calmodulin caused a rapid proteasomal degradation of c-FLIPS, a significant increase of the two-step processing of procaspase-8, and reduced clonogenicity in response to TRAIL. Thus, our results revealed that the upregulation of DR4 and caspase-8 expression in NSCLC cells make them more susceptible to TRAIL. However, these cells could survive TRAIL treatment via upregulation of c-FLIPS, and it is suggested that blocking c-FLIPS expression by inhibition of Ca2+/calmodulin signaling significantly overcomes the acquired resistance of NSCLC cells to TRAIL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号