首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Sodium dodecyl sulphate 7-12% gradient polyacrylamide gel electrophoresis of male and female hamster Harderian gland whole homogenate shows a clear-cut sexual dimorphism, which consists of the presence of two male-specific glycoproteins (168 and 116 kDa) and two specific female proteins (210 and 190 kDa). 2. In the male, castration causes a significant decrease in the concentration of the two glycoprotein fractions. 3. Replacement therapy with testosterone propionate (T) restores the intact male pattern.  相似文献   

2.
Summary Distinct differences occur in the pigmentation and ultrastructural features of the Harderian glands in male and female hamsters. The results of a study on the effect of testosterone on the fine structure of the female Harderian glands are presented here. Glands from three groups of hamsters were examined at intervals up to 49 days: (1) testosterone injected, receiving 2mg testosterone propionate in 0.1 ml sesame oil per day; (2) sham-injected, receiving 0.1 ml sesame oil per day; (3) untreated controls. Testosterone injections caused a reduction in the number of dark-brown pigment granules in the acinar cells starting on the 6th day, whereas clusters of tubules, typical of adult male glands, appeared on the 4th day and increased in number thereafter. Lamellar structures, normally present in the female gland, decreased in testosterone treated specimens. These changes reversed after cessation of testosterone treatment. It is concluded that exogenous testosterone administered to female hamsters modifies the pigmentation and ultrastructure of their Harderian glands towards the male type and that this is a reversable phenomenon. There also appears to be an inverse relationship between the presence of tubular clusters in the acinar cells, and the degree of pigmentation.  相似文献   

3.
Ten lectin-binding patterns were examined with the PAP method for the detection of sugar residues on the Harderian glands of golden hamsters of both sexes. Each lectin showed a specific binding pattern. The most characteristic pattern was exhibited by DBA which intensely stained cells with small lipid vacuoles, but not cells with large lipid vacuoles in the male gland. In the female gland, both cell types showed no reaction with the DBA. The PNA had almost the opposite binding pattern. From the lectin-binding patterns, it can be derived that, not only do the two cell types in same sex glands have different glycoconjugate distribution, but also the same type of cells in different sex glands has a different glycoconjugate distribution. Therefore, the sexual dimorphism of the golden hamster Harderian gland also occurs in its carbohydrate moieties. In this study, the duct of the Harderian glands revealed no sexual dimorphism in the lectin-binding patterns.  相似文献   

4.
The aim of the present work was to study the sexual differences in secretory mechanisms and intracellular calcium ion dynamics in the Harderian gland of the golden hamster. In both sexes the Harderian gland consisted of small and large lobes. In the intact control male glands the secretory portions of both lobes showed wide lumina that contained secretory material and cytoplasmic fragments, suggestive of the occurrence of exocytosis and apocrine secretion. After perfusion with HEPES-buffered Ringer's solution containing 10 microM carbamylcholine (CCh), the glandular cells showed features of enhanced secretion and a rise in intracellular calcium concentration ([Ca2+]i). In the intact control female gland the lumina of most secretory portions in the large lobe contained porphyrin accretions, and exocytosis was the sole secretory mechanism. Stimulation of the large lobe with 10 microM CCh did not raise [Ca2+]i or cause enhanced secretion. The small lobe in females resembled the male gland in secretory functions, and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration in males abolished apocrine secretion; exocytosis became the sole secretory mechanism, and stimulation of the glandular cells with CCh did not cause enhanced secretion or induce a rise in [Ca2+]i. To the contrary, in females, castration restored apocrine secretion and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration did not affect the secretory mechanisms and the effect of CCh on the glandular cells in the small lobes of both male and female glands. The present study points to the possibility that sex hormones may control the functioning or expression of muscarinic receptors in the Harderian gland of the golden hamster.  相似文献   

5.
The effect of castration or administration of testosterone propionate on the subcellular distribution of androgen receptor in mouse submandibular gland was investigated. Within 10 h after castration of male mice, most of the androgen receptor in nuclei was significantly reduced, the androgen receptor in cytosol increased and the increased cytosol receptor retained for at least 40 h. A single injection of testosterone propionate to female mice resulted in the translocation of cytosol androgen receptor to the nuclei by 30 min. The nuclear receptor level remained for at least 24 h and the cytosol receptor was replenished by 24-72 h. These results reveal that the endocrine manipulations such as castration and testosterone injection cause the change in the subcellular distribution of androgen receptor from mouse submandibular gland in both sexes.  相似文献   

6.
7.
The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data showed that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization.  相似文献   

8.
Cross-talk between insulin and the adrenergic system is important in the regulation of energy homeostasis. In cultured, differentiated mouse brown adipocytes, beta3-adrenergic stimulation induced a 4.5-fold increase in uncoupling protein-1 (UCP-1) expression, which was diminished by 25% in the presence of insulin. Beta3-adrenergic stimulation also activated mitogen-activated protein (MAP) kinase by 3.5-fold and caused a decrease in basal phosphoinositide (PI) 3-kinase activity detected in p110gamma- and Gbeta-subunit-immunoprecipitates in a time-dependent manner, whereas insulin stimulated p110alpha- and phosphotyrosine-associated PI 3-kinase activity. Inhibition of MAP kinase or PI 3-kinase potentiated the beta3-adrenergic effect on UCP-1 expression, both alone and in the presence of insulin. Thus, insulin inhibits beta3-adrenergic stimulation of UCP-1, and both MAP kinase and PI 3-kinase are negative regulatory elements in the beta3-adrenergic control of UCP-1 expression. Cross-talk between the adrenergic and insulin signaling systems and impaired regulation of UCP-1 might contribute to the development of a reduced energy balance, resulting in obesity and insulin resistance.  相似文献   

9.
10.
Neuropeptide Y (NPY) is found abundantly in nervous tissues of vertebrate species including the golden hamster. Centrally-administered NPY has been reported to elicit ingestive behaviors in the rat, squirrel, pig, mouse, and chick. To assess NPY's behavioral effects in a New World rodent that does not increase food intake after deprivation, NPY was injected intracerebroventricularly (10.0-0.04 μg/5 μl) in home-caged golden hamsters with ad lib access to food, water and 5% w/v ethanol solution. Food and fluid intakes, and behavior displays were monitored after NPY injection. NPY promptly increased short-term food intake and observed feeding behaviors at 10.0, 3.3, 1.1, and 0.37 μg NPY, but there was no effect on 24 hr food intake. Water and ethanol intakes were increased only at 10.0 and 0.37 μg NPY, respectively. Resting behaviors decreased at NPY doses that increased feeding, but there were no consistent effects of NPY on any other category of behavior. Results demonstrate that NPY potently stimulates short-term food intake and decreases resting behavior in the golden hamster. The lack of compensatory food intake in deprived hamsters cannot be explained as an insensitivity to the putative orexigenic function of endogenous neuropeptide Y.  相似文献   

11.
The ultrastructure of the parathyroid glands of hypophysectomized golden hamsters was studied. In the parathyroid glands of hypophysectomized animals the Golgi complexes and secretory granules were significantly decreased and large vacuolar bodies were significantly increased compared with those of the control animals. In addition, the chief cells contained a few prosecretory granules in the Golgi areas and a few secretory granules were present in the peripheral cytoplasm. These results suggest that the synthesis and release of parathyroid hormone may be suppressed in the parathyroid glands of the hypophysectomized animals.  相似文献   

12.
Several lines of evidence support a role of testicular innervation and peripheral catecholamines in the control of male gonadal function, particularly before puberty. It was therefore of interest to compare the effects of catecholamines on androgen production during the periods of gonadal activity and quiescence in a seasonally breeding species. We have examined direct effects of epinephrine (EPI), norepinephrine (NE), the beta-adrenergic agonist isoproterenol (ISO), and the alpha-adrenergic agonist phenylephrine (PHE) on testicular testosterone (T) production in hamsters with gonadal regression induced by 12 wk exposure to short photoperiod (SD) and in gonadally active hamsters maintained in long photoperiod (LD). Fragments of decapsulated testes were incubated with various combinations of these catecholamines (10(-5)-10(-9) M), human chorionic gonadotropin (hCG; 3.1 mIU/ml), the beta-receptor antagonist propranolol (10(-5) M) and the alpha-l-receptor antagonist prazosin (10(-5) M), for 6 h. In the incubations of testes from LD hamsters, the accumulation of T in the medium was stimulated by hCG but not affected by either catecholamine. However, EPI, NE, and PHE at 10(-5) M, but not ISO, augmented the stimulation of T by hCG. In sharp contrast to these findings, T production by the regressed testes of SD animals was stimulated by EPI (at 10(-8)-10(-5) M), NE (at 10(-6)-10(-5) M), and PHE (at 10(-6)-10(-5) M) in a dose-related manner, but unaffected by ISO. These stimulatory effects were prevented by prazosin, but not by propranolol. Moreover, 10(-5) M of EPI, NE, and PHE augmented the stimulatory effect of hCG on T production. We conclude that the seasonal transition from gonadal activity to quiescence in the adult golden hamster is accompanied by a major increase in the responsiveness of testicular steroidogenesis to catecholamines acting via the alpha-1-adrenoreceptor and that catecholamines can modulate Leydig cell response to gonadotropins in this species. These findings could be related to up-regulation of the alpha-1-receptor in the testis of the SD animal and suggest that catecholamines may be involved in the regulation of the testis during physiological suppression of gonadotropin release and during stress.  相似文献   

13.
Estrous hamsters secrete an odorous vaginal discharge that intact male hamsters investigate vigorously during copulatory behavior. Castrated animals are not attracted to this vaginal discharge. In this study we observed that repeated exposure of intact and castrated hamsters to this vaginal discharge reliably produced habituation of investigatory behavior. Presentation of the odor from a novel female to a habituated male caused an increase in investigation (dishabituation). Castration produced a decrease in investigation within 1 week of surgery. However, the surgery did not produce a decrease in dishabituation until 3 months afterward. Testosterone treatment increased chemosensory investigation in castrated animals. It seems likely that the dishabituation observed in this study may represent a sensory component of the Coolidge Effect.  相似文献   

14.
15.
Summary A combined thin-section/freeze-fracture study was performed on the superficial pineal gland of the golden hamster, comparing the parenchymal and interstitial cells of this animal with those previously investigated in rats. In contrast to rats, no gap junctions and gap/tight junction combinations could be found between pineal parenchymal cells of the hamster. Furthermore, the interstitial cells of the hamster pineal gland were found to have large flat cytoplasmic processes, which abut over large areas equipped with tight junctions. In thin sections, profiles of interstitial cell processes were seen to surround groups of pinealocytes. Interstitial cells and their sheet-like, tight junction-sealed processes thus appear to delimit lobule-like compartments of the hamster pineal gland. Because the classification of the interstitial cells is uncertain, the expression of several markers characteristic of mature and immature astrocytes and astrocyte subpopulations has been investigated by indirect immunohistology. Many of the non-neuronal elements in the pineal gland are vimentin-positive glial cells, subpopulations of which express glial fibrillary acidic protein (GFA) and C1 antigen. The astroglial character of these cells is supported by the lack of expression of markers for neuronal, meningeal and endothelial cells. M1 antigen-positive cells have not been detected.Supported by a grant from Deutsche Forschungsgemeinschaft (Scha 185/9-2)  相似文献   

16.
Summary A sexual dimorphism of the hamster Harderian gland at the ultrastructural level has been reported. The effect of testosterone on the fine structure of the gland from castrated male golden hamsters is reported here. Harderian glands from the following three groups of animals were examined at regular intervals up to 60 days after castration: (1) castrated; (2) castratedsham-injected, receiving 0.1 ml sesame oil per day; (3) castrated-testosterone injected, receiving 2mg testosterone propionate in 0.1 ml sesame oil per day. In groups 1 and 2, clusters of cylindrical tubules, typical of the male gland, decreased in number and disappeared almost completely 2 weeks after castration. Membranous structures, typical of the female gland, prevailed in these two groups throughout the remaining period of experiment. On the other hand, these changes were prevented in the group of castrated animals maintained on testosterone propionate. It is concluded that castration modified the ultrastructure of the male hamster Harderian gland toward the female type and that daily administration of testosterone propionate prevented this change.  相似文献   

17.
SDS polyacrylamide gel electrophoresis of male and female hamster Harderian gland homogenates has shown a clear-cut sexual dimorphism. At least three major proteins present in the male gland are missing from the female gland. Two of the above are associated with the tubular clusters of the male gland while the third seems to be a structural component.  相似文献   

18.
To clarify the role of uncoupling protein-3 (UCP3) in skeletal muscle, we used NMR and isotopic labeling experiments to evaluate the effect of UCP3 knockout (UCP3KO) in mice on the regulation of energy metabolism in vivo. Whole body energy expenditure was determined from the turnover of doubly labeled body water. Coupling of mitochondrial oxidative phosphorylation in skeletal muscle was evaluated from measurements of rates of ATP synthesis (using (31)P NMR magnetization transfer experiments) and tricarboxylic acid (TCA) cycle flux (calculated from the time course of (13)C enrichment in C-4 and C-2 of glutamate during an infusion of [2-(13)C]acetate). At the whole body level, we observed no change in energy expenditure. However, at the cellular level, skeletal muscle UCP3KO increased the rate of ATP synthesis from P(i) more than 4-fold under fasting conditions (wild type, 2.2 +/- 0.6 versus knockout, 9.1 +/- 1.4 micromol/g of muscle/min, p < 0.001) with no change in TCA cycle flux rate (wild type, 0.74 +/- 0.04 versus knockout, 0.71 +/- 0.03 micromol/g of muscle/min). The increased efficiency of ATP production may account for the significant (p < 0.05) increase in the ratio of ATP to ADP in the muscle of UCP3KO mice (5.9 +/- 0.3) compared with controls (4.5 +/- 0.4). The data presented here provide the first evidence of uncoupling activity by UCP3 in skeletal muscle in vivo.  相似文献   

19.
Male hamsters castrated on the day of birth (Day 1) and female hamsters were treated with the free form of testosterone (100 μg/day) on Days 1 and 2, 3 and 4, 5 and 6, 7 and 8, or 9 and 10 postnatally. Following androgen treatment in adulthood, animals treated on Days 1 and 2 or 3 and 4 showed significantly higher mounting and intromission frequencies than animals treated later in life. Sexual receptivity measures following ovarian hormone treatment showed no differences among the male groups, whereas females treated on Days 1 and 2 or 3 and 4 were significantly lower in sexual receptivity measures than females in other treatment groups. Histology of the adult ovaries indicated no modification of normal function in any treatment group. In a subsequent experiment, Day 1 castrated male and intact female hamsters were treated with the free form of testosterone on Days 1–5 (40 or 100 μg/day), 6–10 (40 or 100 μg/day), or Days 1–10 (50 μg/day). Masculine behavior measures were significantly higher in males treated Days 1–10 than in other groups. Among the females, masculine behavior was highest in those treated Days 1–5 postnatally. Sexual receptivity in both males and females was significantly depressed by testosterone treatment Days 1–10 postnatally. Ovarian histology also revealed alterations in gonadal function in females treated Days 1–5 and 1–10 postnatally. Compared with previously published findings, these data suggest that testosterone can be as effective in inducing behavioral masculinization and defeminization as testosterone propionate, provided that treatment extends over a prolonged period during early postnatal development.  相似文献   

20.
Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of doxycycline (dox) induced UCP-2 fourfold (424 ± 113%, mean±SEM) and 0.1 μg/ml twofold (178 ± 29%, n=3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 ± 11%) as well as D-[U-(14)C]-glucose oxidation (+5 ± 9% at 11 mM glucose). Oxidation of [1-(14)C]-oleate was increased from 4088 to 5797 fmol/μg prot/2h at 3.3mM glucose, p<0.03. Oxidation of L-[(14)C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p<0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p<0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as seen in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号