首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R. W. Ruess 《Oecologia》1988,77(4):550-556
Summary Sporobolus kentrophyllus, a grazing-tolerant C4 grass from the southeastern Serengeti Plains, was grown in solution culture to examine the effects of clipping on the uptake, preference and subsequent transport of varying nitrogen forms. Clipping reduced offtake mass, crown mass ane root mass, resulting in a 58% decline in plant mass. Proportional biomass allocation to roots decreased with clipping, while tillering rates increased. Clipping also increased the nitrogen concentrations of all tissues, and plant nitrogen uptake (nitrogen accumulated throughout the experiment per gram root). The 15N concentrations (% atom excess) of all tissues were higher in clipped compared with unclipped plants, and the average 15N uptake rate of clipped plants was twice that of unclipped plants. The relative 15N allocation to aboveground mass, a measure of canopy sink strength, was higher in clipped plants. Plants fed 15N-ammonium or 15N-nitrate during the 15N pulse experiment had greater 15N tissue concentrations compared with urea-fed plants, and 15N uptake rates were higher in ammonium-fed and nitrate-fed plants, compared with urea-fed plants. The relative magnitudes of these differences were higher when plants were clipped. Clipped plants had higher uptake rates for potassium, phosphorus and sodium, while differences between clipping treatments for calcium, iron, and magnesium were indistinguishable. Rapid uptake rates for species on the southeastern Serengeti plains, particularly during grazing periods, have important implications for nutrient cycling in this system.  相似文献   

2.
Question: What is the role of functional group identity in determining community composition and dynamics? Location: A natural grassland in Yukon Territory, Canada. Methods: We selectively removed single plant functional groups (graminoids, forbs, legumes) to examine their effects on biomass compensation, the distribution of biomass among common and rare colonizing species, and plant species richness and diversity. Removals were conducted across two environmental treatments (fertilization and fungicide) to test if biomass compensation was context‐dependent. Biomass was estimated non‐destructively using point‐intercept sampling. Results: When graminoids or legumes were continuously removed, there was full biomass compensation by the remaining functional groups after 5 years, but only partial compensation when forbs were removed. Biomass compensation depended on the colonizing functional group; forbs showed no increase in biomass until 5 years after the removal of any functional group, but graminoids colonized quickly after removals. After any removal, the dominant species within each remaining functional group showed no compensatory growth, whereas the first subdominant forb and graminoid both increased in biomass. Rare species had a delayed response to removals; rare species biomass only increased beginning 5 years after removals. Context dependence was observed only in the response of subdominant species to removals, and these responses did not translate into context‐dependent effects on total estimated biomass. Conclusion: We show that the effects of losing a plant functional group depends both on the identity of the group removed and on the species remaining. In this northern grassland, most compensatory growth was by the subdominant species, which may determine the direction of community development in the long term.  相似文献   

3.
4.
Summary The dwarf shrub Indigofera spinosa Forsk. (Papilionacea), a native forage species of arid Northwest Kenya, was propogated from seed, grown in a controlled environment, and subjected to three treatments of defoliation and watering frequencies in a factorial experimental design. Biomass production and nitrogen accumulation in tissue components were measured to determine defoliation responses in a water-limited environment. We hypothesized that plants would maintain biomass and nitrogen flows despite removal of aboveground meristems and tissues by defoliation. Principal experimental results included a slight reduction (11%; P=0.08) of total biomass production by clipping ca. 1/3 or 2/3 of new leaves and stems and all apical meristems every month. Total aboveground production was not affected by clipping, while final root biomass was reduced 17% by the 2/3 clipping. The least water stressed plants were affected most negatively by defoliation, and the unclipped plants responded more negatively to greater water limitation. Plants achieved partial biomass compensation through alterations in shoot activity and continued allocation of photosynthate to roots. A smaller fraction of leaf production was directed to litter in clipped plants although clipping only removed the youngest tissues, suggesting that clipping increased leaf longevity. In turn, each leaf probably contributed a greater total quantity of photosynthate. Photosynthetic rates were also likely to have been increased by clipping water-stressed plants. In contrast to biomass, plants overcompensated for nitrogen lost to defoliation. Total nitrogen uptake by individual plants was stimulated by defoliation, as there was more total nitrogen in leaves and stems. Increased nitrogen uptake was achieved by clipping stimulation of total uptake per unit of root rather than of total root mass.  相似文献   

5.
6.
Experiments were conducted in an outdoor facility to quantify growth responses of six mangrove species to rates of dissolved inorganic nitrogen and phosphorus supply mimicking the range of N and P mineralization rates in natural soils. Growth of all six species on nitrogen was nonlinear. Stem extension rates of Rhizophora apiculata and Xylocarpus granatum were enhanced to the highest rate of N supply (50 mmol m− 2 d− 1); Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus moluccensis stem growth leveled off by 10 mmol m− 2 d− 1. Stem growth of Ceriops tagal peaked at 24-26 mmol N m− 2 d− 1. Except for A. marina and C. tagal, rates of biomass increase declined at the highest supply rate, indicating NH4+ toxicity. At different rates of P supply, stem extension rates and rates of biomass increase of R. apiculata and C. tagal best-fit Gaussian curves and B. gymnorrhiza stem growth and biomass increase best-fit sigmoidal and Gaussian curves, respectively; X. moluccensis stem and biomass growth increased linearly, but stem and biomass growth rates of A. marina did not vary in relation to P supply. Stem growth of X. granatum was Gaussian but rates of biomass increase best-fit a quadratic equation. Changes in leaf and root N and P content mirrored the growth responses. As rates of N and P mineralization in natural mangrove soils overlap with the lowest rates of N and P supplied in these experiments, the growth responses imply that mangroves are intrinsically nutrient-limited at mineralization rates often encountered in nature. Such species specificity may have significant implications for recruitment success and the establishment of species gradients within mangrove forests.  相似文献   

7.
In nitrogen (N)-limited systems, the response of symbiotic N fixation to elevated atmospheric [CO2] may be an important determinant of ecosystem responses to this global change. Experimental tests of the effects of elevated [CO2] have not been consistent. Although rarely tested, differences among legume species and N supply may be important. In a field free-air CO2 enrichment (FACE) experiment, we determined, for four legume species, whether the effects of elevated atmospheric [CO2] on symbiotic N fixation depended on soil N availability or species identity. Natural abundance and pool-dilution 15N methods were used to estimate N fixation. Although N addition did, in general, decrease N fixation, contrary to theoretical predictions, elevated [CO2] did not universally increase N fixation. Rather, the effect of elevated [CO2] on N fixation was positive, neutral or negative, depending on the species and N addition. Our results suggest that legume species identity and N supply are critical factors in determining symbiotic N-fixation responses to increased atmospheric [CO2].  相似文献   

8.
《Journal of plant physiology》2014,171(10):868-875
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5 mmol L−1) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba × P. berolinensis) to gaseous NO2 (4 μl 1−1) for three time periods (0, 14 and 48 h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48 h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13–15 s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface.  相似文献   

9.
Summary Nitrogen fixing trees and shrubs may be useful in revegetation efforts. Speculation that insufficient endophyte populations in surface soils may limit non-leguminous symbiotic nitrogen fixation in marginal land was explored.Purshia tridentata andP. glandulosa seedlings were grown in greenhouse trials using ten soils from nativePurshia sites. Treatments include a control, an inoculated treatment, and six mmole nitrogen amendment. When inoculated with aP.tridentata crushed nodule inoculum, two of five non-nodulating soils and three sparsely nodulating soils produced well nodulated plants. Inoculation also increased nodule mass, total nitrogen, nitrogen content and shoot dry mass in plants from some of the soils. Of the three soils failing to produce nodulated plants when inoculated, one produced plants that responded well to nitrogen additions but failed to nodulate under low nitrogen conditions; another produced severely stunted plants indicating nutritional limitations on the host; and the third produced plants that were not nitrogen deficient. An application of nitrogen completely suppressed nodulation in all but one soil. The twoPurshia species were similar in nodulation, nitrogen fixation and growth, although important exceptions exist that indicate species may differ in adaptability to certain soil conditions.  相似文献   

10.
Background and AimsKnowledge of plant resource acquisition strategies is crucial for understanding the mechanisms mediating the responses of ecosystems to external nitrogen (N) input. However, few studies have considered the joint effects of above-ground (light) and below-ground (nutrient) resource acquisition strategies in regulating plant species responses to N enrichment. Here, we quantified the effects of light and non-N nutrient acquisition capacities on species relative abundance in the case of extra N input.MethodsBased on an N-manipulation experiment in a Tibetan alpine steppe, we determined the responses of species relative abundances and light and nutrient acquisition capacities to N enrichment for two species with different resource acquisition strategies (the taller Stipa purpurea, which is colonized by arbuscular mycorrhizal fungi, and the shorter Carex stenophylloides, which has cluster roots). Structural equation models were developed to explore the relative effects of light and nutrient acquisition on species relative abundance along the N addition gradient.Key ResultsWe found that the relative abundance of taller S. purpurea increased with the improved light acquisition along the N addition gradient. In contrast, the shorter C. stenophylloides, with cluster roots, excelled in acquiring phosphorus (P) so as to elevate its leaf P concentration under N enrichment by producing large amounts of carboxylate exudates that mobilized moderately labile and recalcitrant soil P forms. The increased leaf P concentration of C. stenophylloides enhanced its light use efficiency and promoted its relative abundance even in the shade of taller competitors.ConclusionsOur findings highlight that the combined effects of above-ground (light) and below-ground (nutrient) resources rather than light alone (the prevailing perspective) determine the responses of grassland community structure to N enrichment.  相似文献   

11.
The initial product of fixation of [13N]N2 by pure cultures of the reconstituted symbiotic association between Anthoceros punctatus L. and Nostoc sp. strain ac 7801 was ammonium; it accounted for 75% of the total radioactivity recovered in methanolic extracts after 0.5 min and 14% after 10 min of incubation. Glutamine and glutamate were the primary organic products synthesized from [13N]N2 after incubation times of 0.5–10 min. The kinetics of labeling of these two amino acids were characteristic of a precursor (glutamine) and product (glutamate) relationship. Results of inhibition experiments with methionine sulfoximine (MSX) and diazo-oxonorleucine were also consistent with the assimilation of N2-derived NH 4 + by Anthoceros-Nostoc through the sequential activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1), with little or no assimilation by glutamate dehydrogenase (EC 1.3.1.3). Isolated symbiotic Nostoc assimilated exogenous 13NH 4 + into glutamine and glutamate and their formation was inhibited by MSX, indicating operation of the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway: However, relative to free-living cultures, isolated symbiotic Nostoc assimilated 80% less exogenous ammonium into glutamine and glutamate, implying that symbiotic Nostoc could assimilate only a fraction of N2-derived NH 4 + . This implication was tested by using Anthoceros associations reconstituted with wild-type or MSX-resistant strains of Nostoc incubated with [13N]N2 in the presence of MSX. The results of these experiments indicated that, in situ, symbiotic Nostoc assimilated about 10% of the N2-derived NH 4 + and that NH 4 + was made available to Anthoceros tissue where it was apparently assimilated by the GS-GOGAT pathway. Since less than 1% of the fixed N2 was lost to the suspension medium, it appears that transfer of NH 4 + from symbiont to host tissue was very efficient in this extracellular symbiotic association.Abbreviations DON 6-diazo-5-oxo-l-norleucine - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSX l-methionine-dl-sulfoximine  相似文献   

12.
13.
High-latitude peatlands are important soil carbon sinks. In these ecosystems, the mineralization of carbon and nitrogen are constrained by low temperatures and low nutrient concentrations in plant litter and soil organic matter. Global warming is predicted to increase soil N availability for plants at high-latitude sites. We applied N fertilizer as an experimental analogue for this increase. In a three-year field experiment we studied N fertilization effects on leaf litter decomposition and N dynamics of the four dominant plant species (comprising >75% of total aboveground biomass) in a sub-arctic bog in northern Sweden. The species were Empetrum nigrum (evergreen shrub), Eriophorum vaginatum (graminoid), Betula nana (deciduous shrub) and Rubus chamaemorus (perennial forb). In the controls, litter mass loss rates increased in the order: Empetrum < Eriophorum < Betula < Rubus. Increased N availability had variable, species-specific effects: litter mass loss rates (expressed per unit litter mass) increased in Empetrum, did not change in Eriophorum and Betula and decreased in Rubus. In the leaf litter from the controls, we measured no or only slight net N mineralization even after three years. In the N-fertilized treatments we found strong net N immobilization, especially in Eriophorum and Betula. This suggests that, probably owing to substantial chemical and/or microbial immobilization, additional N supply does not increase the rate of N cycling for at least the first three years.  相似文献   

14.
The overall aim of this study was to test for inter-species variation in plant and soil responses to defoliation among a broad range of temperate grass species and life-history strategies. We used a microcosm experiment where a range of grass species differing in life history traits were subjected to different intensities of defoliation, and a range of aboveground and belowground plant and soil responses were measured. All plant attributes, including accumulated shoot biomass, root biomass and root length, showed a strong negative response to defoliation, although plant species exhibited subtle differences in the way that they responded to increased severity of defoliation. Defoliation also exerted a strong influence on soil properties, decreasing soil microbial carbon (C) and the soil microbial C:nitrogen (N) ratio, and increasing inorganic N availability and potential N mineralisation across all species. Despite the wide range in life history strategies, plant species did not differ in their influence on most of the soil variables, except for the rate of nitrate mineralisation, which was lowest under plant species that displayed the least relative detrimental responses to defoliation. Collectively, our results suggest that plant and soil responses to defoliation are reasonably consistent across a broad range of grass species, with only subtle inter-specific differences among species.  相似文献   

15.
Exchange rates were calculated as a function of pH from line widths of methylamine resonances in 13C-NMR spectra of N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine (TML) and N epsilon,N epsilon,N alpha,N alpha-tetramethyllysine methyl ester (TMLME). The pH dependence of the dimethyl alpha-amine exchange rate could be adequately described by assuming base-catalyzed chemical exchange between two diastereotopic methyl populations related by nitrogen inversion. Deprotonation of the alpha-amine was assumed to occur by proton transfer to (1) OH-, (2) water, (3) a deprotonated amine or (4) RCO2-. Microscopic rate constants characterizing each of these transfer processes (k1, k2, k3 and k4, respectively) were determined by fitting the rates calculated from line width analysis to a steady-state kinetic model. Using this procedure it was determined that for both TML and TMLME k2 approximately equal to 1-10 M-1 s-1, k3 approximately equal to 10(6) M-1 s-1 and ki, the rate constant for nitrogen inversion was about 10(8)-10(9) s-1. Upper limits of 10(12) and 10(3) M-1 s-1 could be determined for k1 and k4, respectively. A similar kinetic analysis was used to explain pH-dependent line-broadening effects observed for the N-terminal dimethylalanyl resonance in 13C-NMR spectra of concanavalin A, reductively methylated using 90% [13C]formaldehyde. From exchange data below pH 4 it could be determined that amine inversion was limited by the proton transfer rate to the solvent, with a rate constant estimated at 20 M-1 s-1. Above pH 4, exchange was limited by proton transfer to other titrating groups in the protein structure. Based upon their proximity, the carboxylate side chains of Asp-2 and Asp-218 appear to be likely candidates. The apparent first-order microscopic rate constant characterizing proton transfer to these groups was estimated to be about 1 X 10(4) s-1. Rate constants characterizing nitrogen inversion (ki), proton transfer to OH- (k1) and proton transfer to the solvent (k2) were estimated to be of the same order of magnitude as those determined for the model compounds. On the basis of our results, it is proposed that chemical exchange processes associated with base-catalyzed nitrogen inversion may contribute to 15N or 13C spin-lattice relaxation times in reductively methylated peptides or proteins.  相似文献   

16.
An important question in biodiversity studies is whether disturbances in ecosystems will cause a net loss of species or whether such losses can be compensated by replacement of other species. We use two natural disturbances, fire and grazing, to examine the response of bird and arthropod communities in grasslands of Serengeti, Tanzania. Both burning and grazing by migrant ungulates take place at the end of the rains in June–July. We documented the communities before disturbance, then 1, 4 and 20 weeks after disturbance on three replicate plots and compared them with three undisturbed plots. Birds were recorded by observation, arthropods from pitfall, tray trap and sweepnet samples. We expected that as the grass biomass was reduced by either disturbance, bird communities would change with concomitant change in arthropod food abundance. Alternatively, bird communities would change not with the absolute amount of food but with the greater accessibility of food as the grass structure changed from long to short grass. Results showed first that both bird species richness and abundance increased after both types of disturbance, but burnt sites showed a greater increase than that for grazed sites. Second, there was a change in bird species composition with disturbance. The functionally equivalent athi short‐toed lark (Calandrella athensis) was replaced by the red‐capped lark (Calandrella cinerea). Third, the abundance of most groups of arthropods was lower on disturbed sites than those on undisturbed sites, and the reduction of arthropod numbers was greatest on burnt sites. These results imply that bird abundance did not occur through an increase in arthropod abundance but rather through a change in the grass structure making food more accessible; and the higher predation could have caused the lower arthropod abundance. In addition, some bird species replaced others thus functionally compensating for their loss.  相似文献   

17.
In vitro experiments have shown that fermentation of carbohydrates prevents accumulation of nitrogen in the colon. Variable results have been obtained on modulation of dietary intakes in vivo. Lactose[15N,15N]-labeled ureide has been proposed as a tool to study colonic nitrogen metabolism. However, on oral administration of the marker, different urinary excretion patterns of the 15N label have been found. In this study, 50 mg lactose[15N,15N]ureide was directly instilled in the colon through an orocecal tube to investigate the colonic handling of this molecule in a direct way. In basal conditions, 42% (range, 37-48%) of labeled nitrogen administered as lactose[15N,15N]ureide was retrieved in urine after 72 h. A substantial variability in total urinary excretion of the label was found, but the urinary excretion pattern of the label was similar in all volunteers. When inulin, a fermentable carbohydrate, was administered together with the labeled marker, a significant decrease in urinary excretion of 15N after 72 h was found, to 29% (range, 23-34%). The effect of a smaller dose of inulin (250 mg) on colonic handling of lactose[15N,15N]ureide (50 mg), was investigated in another group of volunteers, and this time, fecal excretion of the marker was also evaluated. The results seem to indicate that fermentation of inulin causes an increased fecal excretion of the marker, thereby reducing urinary excretion but not retention in the human nitrogen pool. This instillation study shows that lactose[15N,15N]ureide is a tool with good properties to investigate the effect of different types of carbohydrates on nitrogen metabolism in the proximal colon in vivo.  相似文献   

18.
Mustard (Brassica juncea L.) is characterized by large number of broad oblong shaped leaves in the lower layers. Our earlier studies have shown that removal of these shaded lower leaves on mustard plant axis enhanced growth, photosynthetic capacity and yield of the crop. We now present evidence that soil-applied nitrogen (N) at pre- or post-flowering stage following defoliation of lower leaves influences plant growth, photosynthesis and assimilation balance. Following defoliation at pre-flowering, i.e. 40 d after sowing (DAS) and N applied at the rate of 100 kg ha−1 at the time of sowing and 50 kg ha−1 at post-flowering (60 DAS) enhanced the characteristics maximally. The defoliation treatment together with N combinations and the time of its application, N at 150 kg ha−1 applied as single dose at the time of sowing or N applied in split; 100 kg ha−1 at the time of sowing and 50 kg ha−1 at 40 DAS or 75 kg ha−1 at the time of sowing or 75 kg ha−1 at pre- or post-flowering time proved less effective. The plants which were not defoliated and received 75 kg N ha−1 at the time of sowing and 75 kg ha−1 at 60 DAS showed lowest values. Furthermore, N assimilation was more efficient in plants following defoliation at 40 DAS. The results suggest that split N application (100 kg ha−1 at sowing and 50 kg ha−1 at post-flowering) enhances substantially growth, photosynthesis, N assimilation and yield of mustard following defoliation. This management practice could be adopted in mustard culture for increasing seed yield together with minimizing N loss.  相似文献   

19.
Abstract. Grassland communities are increasingly recognized as disturbance‐dependent ecosystems, yet there are few replicated, multi‐site studies documenting vegetation responses to varying frequencies and types of grassland disturbance. Even so, land managers frequently manipulate disturbance regimes in an attempt to favour native grassland plants over exotic species. We conducted a factorial experiment testing three frequencies of clipping combined with litter accumulation, litter removal, and soil disturbance within the highly threatened California coastal prairie plant community. We monitored the response of native/exotic, grass/forb plant guilds once a year for four years. More frequent clipping reduced cover of exotic grasses and favoured exotic forbs, whereas native species were largely unaffected by clipping frequency. Litter accumulation, litter removal, and soil disturbance did not affect vegetation composition. Effects of litter accumulation may take longer than our experiment allowed, and soil disturbance due to our treatments was not sufficiently strong to show consistent effects relative to mammalian soil disturbance. Treatment response of some plant guilds differed among sites, highlighting the importance of replicating experiments at several sites before recommending conservation management practices.  相似文献   

20.
A gas chromatographic-mass spectrometric method for analysis of L-[2-15N]- and L-[5-15N]glutamine is described. The method is based on direct acylation of glutamine with trifluoroacetic anhydride and the formation of the N,N-bis-trifluoroacetyl-L-glutamine derivative. This simple and sensitive method is capable of detecting approximately 0.5 atom% excess 15N in as little as 10 microliter of plasma with a mean coefficient of variance of 11.6%. The method was applied to determine the appearance of 15N enrichment in plasma amino-N and amide-N of glutamine in a healthy adult volunteer during a constant infusion of 15NH4Cl. A plateau level of 3.7 and 2.6 atom% excess was observed in amide-N and amino-N, respectively, at 1 and 2 h after 15NH4Cl infusion was started.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号