首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Poon A  Eidelman D  Laprise C  Hamid Q 《Autophagy》2012,8(4):694-695
Reactive oxidative species (ROS) are essential in cellular survival; however, excessive production and chronic exposure to ROS pose serious health threats. Excessive production of ROS is thought to play a pivotal role in the pathogenesis of asthma, where exhaled levels of ROS have been found to positively correlate with disease severity. Autophagy is induced by ROS to remove oxidized proteins or organelles to minimize tissue damage, and presents itself as a good candidate pathway for investigation in asthma pathogenesis. Given the role of oxidative stress in the pathogenesis of asthma and disease severity, we hypothesized that autophagy is associated with asthma pathogenesis, and sought to detect its presence using both genetic and histological approaches. We found variant rs12212740, an intronic SNP of ATG5, to be associated with asthma and forced expiratory volume in 1 second (FEV(1)) percent predicted in the French Canadian population and with FEV(1) in an American Caucasian cohort. Furthermore, double-membrane autophagosomes were more easily detected in fibroblast and epithelial cells from a bronchial biopsy tissue of a moderately severe asthma patient compared with corresponding cells of a healthy subject. Asthma is associated with a cytokine milieu [e.g., interleukin (IL)-13] that promotes transforming growth factor-β1 (TGFβ1) affiliated airway remodeling, and agonistic relationships existed among these cytokines and ROS. Hence, autophagy may be a cellular mechanism that promotes TGFβ1 airway remodeling and loss of lung function in asthma.  相似文献   

2.
《Autophagy》2013,9(4):694-695
Reactive oxidative species (ROS) are essential in cellular survival; however, excessive production and chronic exposure to ROS pose serious health threats. Excessive production of ROS is thought to play a pivotal role in the pathogenesis of asthma, where exhaled levels of ROS have been found to positively correlate with disease severity. Autophagy is induced by ROS to remove oxidized proteins or organelles to minimize tissue damage, and presents itself as a good candidate pathway for investigation in asthma pathogenesis. Given the role of oxidative stress in the pathogenesis of asthma and disease severity, we hypothesized that autophagy is associated with asthma pathogenesis, and sought to detect its presence using both genetic and histological approaches. We found variant rs12212740, an intronic SNP of ATG5, to be associated with asthma and forced expiratory volume in 1 second (FEV1) percent predicted in the French Canadian population and with FEV1 in an American Caucasian cohort. Furthermore, double-membrane autophagosomes were more easily detected in fibroblast and epithelial cells from a bronchial biopsy tissue of a moderately severe asthma patient compared with corresponding cells of a healthy subject. Asthma is associated with a cytokine milieu [e.g., interleukin (IL)-13] that promotes transforming growth factor-β1 (TGFβ1) affiliated airway remodeling, and agonistic relationships existed among these cytokines and ROS. Hence, autophagy may be a cellular mechanism that promotes TGFβ1 airway remodeling and loss of lung function in asthma.  相似文献   

3.
The aggregation and accumulation of amyloid-β (Aβ) plays a significant role in the pathogenesis of Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Diazoxide (DZ), a highly selective drug capable of opening mitochondrial ATP-sensitive potassium channels, has neuroprotective effects against neuronal cell death. However, the mechanism through which DZ protects cholinergic neurons against Aβ-induced oxidative injury is still unclear. The present study was designed to investigate the effects of DZ pretreatment against Aβ1–42 induced oxidative damage and cytotoxicity. Through measures of DZ effects on Aβ1–42 induced cellular damage, reactive oxygen species (ROS) and MDA generation and expressions of gp91phox and p47phox in cholinergic neurons, new insights into the neuroprotective mechanisms can be derived. Aβ1–42 significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide levels and increased ROS and MDA production; all effects were attenuated by pretreatment with DZ or diphenyleneiodonium chloride (a NOX2 inhibitor). Pretreatment with DZ also attenuated the upregulation of NOX2 subunits (gp91phox and p47phox) induced by Aβ1–42. Since NOX2 is one of the main sources of free radicals, these results suggest that DZ can counteract Aβ1–42 induced oxidative stress and associated cell death by reducing the level of ROS and MDA, in part, by alleviating NOX2 expression.  相似文献   

4.
以H2O2为中心的活性氧(reactive oxygen species,ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍特征,其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应,并与一系列信号转导过程相关联。作为关键的ROS产生酶,质膜NADPH氧化酶(plasma membrane NADPH oxidase,PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用,被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展,并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

5.
以H2O2为中心的活性氧(reactive oxygen species, ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍 特征, 其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应, 并与一系列信号转导过程相关联。作为关键的ROS产生酶, 质膜NADPH氧化酶(plasma membrane NADPH oxidase, PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用, 被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展, 并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

6.
Methamphetamine (METH) is a drug of abuse with neurotoxic and vascular effects that may be mediated by reactive oxygen species (ROS). However, potential sources of METH-induced generation of ROS are not fully understood. This study is focused on the role of NAD(P)H oxidase (NOX) in METH-induced dysfunction of brain endothelial cells. Treatment with METH induced a time-dependent increase in phosphorylation of NOX subunit p47, followed by its binding with gp91 and p22, and the formation of an active NOX complex. An increase in NOX activity was associated with elevated production of ROS, alterations of occludin levels and increased transendothelial migration of monocytes. Inhibition of NOX by NSC 23766 attenuated METH-induced ROS generation, changes in occludin protein levels and monocyte migration. Because an active NOX complex is localized to caveolae, we next evaluated the role of caveolae in METH-mediated toxicity to brain endothelial cells. Treatment with METH induced phosphorylation of ERK1/2 and caveolin-1 protein. Inhibition of ERK1/2 activity or caveolin-1 silencing protected against METH-induced alterations of occludin levels. These findings indicate an important role of NOX and functional caveolae in METH-induced oxidative stress in brain endothelial cells that contribute to the subsequent alterations of occludin levels and transendothelial migration of inflammatory cells.  相似文献   

7.
The objective of this work was to analyze the possible association between cyclooxygenase-2 (COX-2) and NADPH oxidases (NOX) in liver cells, in response to various proinflammatory and toxic insults. First, we observed that treatment of Chang liver (CHL) cells with various COX-2 inducers increased reactive oxygen species (ROS) production concomitant with GSH depletion, phorbol 12-myristate 13-acetate (PMA) being the most effective treatment. Moreover, early changes in the oxidative status induced by PMA were inhibited by glutathione ethyl ester, which also impeded COX-2 induction. In fact, CHL cells expressed NOX1 and NOX4, although only NOX4 expression was up-regulated in the presence of PMA. Knock-down experiments suggested that PMA initiated a pathway in which NOX1 activation controlled COX-2 expression and activity, which, in turn, induced NOX4 expression by activation of the prostaglandin receptor EP4. In addition, CHL cells overexpressing COX-2 showed higher NOX4 expression and ROS content, which were decreased in the presence of the COX-2 inhibitor DFU. Interestingly, we found that addition of prostaglandin E(2) (PGE(2)) also induced NOX4 expression and ROS production, which might promote cell adhesion. Finally, we determined that NOX4 induction by PGE(2) was dependent on ERK1/2 signaling. Taken together, these results indicate that NOX proteins and COX-2 are reciprocally regulated in liver cells.  相似文献   

8.
Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis.  相似文献   

9.
The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca2+ gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.  相似文献   

10.
Wang X  Ke Z  Chen G  Xu M  Bower KA  Frank JA  Zhang Z  Shi X  Luo J 《PloS one》2012,7(5):e38075
It has been suggested that excessive reactive oxygen species (ROS) and oxidative stress play an important role in ethanol-induced damage to both the developing and mature central nervous system (CNS). The mechanisms underlying ethanol-induced neuronal ROS, however, remain unclear. In this study, we investigated the role of NADPH oxidase (NOX) in ethanol-induced ROS generation. We demonstrated that ethanol activated NOX and inhibition of NOX reduced ethanol-promoted ROS generation. Ethanol significantly increased the expression of p47(phox) and p67(phox), the essential subunits for NOX activation in cultured neuronal cells and the cerebral cortex of infant mice. Ethanol caused serine phosphorylation and membrane translocation of p47(phox) and p67(phox), which were prerequisites for NOX assembly and activation. Knocking down p47(phox) with the small interfering RNA was sufficient to attenuate ethanol-induced ROS production and ameliorate ethanol-mediated oxidative damage, which is indicated by a decrease in protein oxidation and lipid peroxidation. Ethanol activated cell division cycle 42 (Cdc42) and overexpression of a dominant negative (DN) Cdc42 abrogate ethanol-induced NOX activation and ROS generation. These results suggest that Cdc42-dependent NOX activation mediates ethanol-induced oxidative damages to neurons.  相似文献   

11.
NADPH oxidases have been identified as sources of reactive oxygen species (ROS) in vascular cells. In addition to the initially described enzyme containing gp91phox (NOX2), several homologues to NOX2 have been identified. Whereas NOX1, NOX2, and NOX4 are expressed in endothelial cells, a functional role of NOX5 containing additional N-terminal calcium-binding domains of varying sequences has not been reported in these cells. NOX5 protein was found in the endoplasmic reticulum of human microvascular endothelial cells (HMEC-1) and in the vascular wall. HMEC-1 cells expressed NOX5beta and NOX5delta as well as a variant lacking calcium-binding domains (NOX5S). NOX5beta and NOX5S increased basal ROS levels. Ionomycin exclusively enhanced NOX5beta-mediated ROS production. Although p22phox, when overexpressed, interacted with both NOX5 proteins, it was not essential for NOX5-mediated ROS production. NOX5 proteins stimulated endothelial cell proliferation and the formation of capillary-like structures whereas depletion of NOX5 by siRNA prevented these responses to thrombin. These data show that endothelial cells express different NOX5 variants including NOX5S lacking calcium-binding domains. NOX5 proteins are functional, promoting endothelial ROS production, proliferation, and the formation of capillary-like structures and contribute to the endothelial response to thrombin. These findings suggest that NOX5 variants play a novel role in controlling ROS-dependent processes in the vasculature.  相似文献   

12.
The human genome is continuously exposed to such potentially deleterious agents as the highly reactive molecules known as reactive oxygen species (ROS). ROS include superoxide anions (O(2)(-)) and hydrogen peroxide (H(2)O(2)). Over the last decade, the ROS-generating NADPH oxidases (NOXs) have been recognized as one of the main sources of ROS production in numerous human cell types. In addition to regulating normal physiological redox-dependent processes, the NOXs are involved in cellular oxidative stress. In contrast to the other NOXs, the NADPH oxidase NOX4 exists in the immediate environment of the nucleus. There is accumulating evidence for the involvement of NOX4-derived ROS in genomic instability as well as in cancer and other inflammation-related diseases. We recently showed that NOX4 plays a critical role in oncogenic Ras-induced DNA damage. Here we reflect upon the growing awareness of NOX4, review its role in inducing genomic instability, and call attention to its possible role in nuclear redox-sensitive mechanisms underlying DNA-damage signaling and repair.  相似文献   

13.
NADPH氧化酶催化亚基gp91phox(NOX2)及其同源物NOX1、NOX3、NOX4、NOX5、DUOX1和DUOX2统称为NOX家族,它们作为NADPH酶的核心亚基,是该酶发挥作用的关键。NOX家族几乎存在于所有的细胞,吞噬细胞中NADPH氧化酶生成的ROS主要起细胞防御功能,与此不同的是非吞噬细胞中NADPH氧化酶产生的ROS作为信号分子,参与机体内信号转导途径,调节细胞分化、增殖、衰老和凋亡等活动;当NOX家族蛋白异常表达,ROS水平急剧增加时,则能诱导机体内多种疾病的发生。  相似文献   

14.
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS.  相似文献   

15.
Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.  相似文献   

16.
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.  相似文献   

17.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

18.
An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus‐induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4‐derived ROS in activating redox‐regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4‐mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion. These events correlate with down-regulation of genes involved in the maintenance of redox homeostasis, such as gamma-GCS and MnSOD, and elevated mitochondrial ROS. Nonetheless, not all the ROS proceed from the mitochondria. Emerging evidences indicate that ROS production by TGF-beta is also mediated by the NADPH oxidase (NOX) system. TGF-beta-treated FaO cells induce nox1 expression. However, the treatment with TGF-beta and AG1478 greatly enhanced the expression of another family member: nox4. NOX1 and NOX4 targeted knock-down by siRNA experiments suggest that they play opposite roles, because NOX1 knockdown increases caspase-3 activity and cell death, whilst NOX4 knock-down attenuates the apoptotic process. This attenuation correlates with maintenance of GSH and antioxidant enzymes levels. In summary, EGFR inhibition enhances apoptosis induced by TGF-beta in FaO rat hepatoma cells through an increased oxidative stress coincident with a change in the expression pattern of NOX enzymes.  相似文献   

20.
The deliberate production of reactive oxygen species (ROS) by phagocyte NADPH oxidase is widely appreciated as a critical component of antimicrobial host defense. Recently, additional homologs of NADPH oxidase (NOX) have been discovered throughout the animal and plant kingdoms, which appear to possess diverse functions in addition to host defense, in cell proliferation, differentiation, and in regulation of gene expression. Several of these NOX homologs are also expressed within the respiratory tract, where they participate in innate host defense as well as in epithelial and inflammatory cell signaling and gene expression, and fibroblast and smooth muscle cell proliferation, in response to bacterial or viral infection and environmental stress. Inappropriate expression or activation of NOX/DUOX during various lung pathologies suggests their specific involvement in respiratory disease. This review summarizes the current state of knowledge regarding the general functional properties of mammalian NOX enzymes, and their specific importance in respiratory tract physiology and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号