首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins   总被引:1,自引:0,他引:1  
Schuijers J  Clevers H 《The EMBO journal》2012,31(12):2685-2696
After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp.  相似文献   

3.
The concept of ‘field cancerization’ describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5+ stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.  相似文献   

4.
5.
Progastrin is an unprocessed soluble peptide precursor with a well-described tumor-promoting role in colorectal cancer. It is expressed at small levels in the healthy intestinal mucosa, and its expression is enhanced at early stages of intestinal tumor development, with high levels of this peptide in hyperplastic intestinal polyps being associated with poor neoplasm-free survival in patients. Yet, the precise type of progastrin-producing cells in the healthy intestinal mucosa and in early adenomas remains unclear. Here, we used a combination of immunostaining, RNAscope labelling and retrospective analysis of single cell RNAseq results to demonstrate that progastrin is produced within intestinal crypts by a subset of Bmi1+/Prox1+/LGR5low endocrine cells, previously shown to act as replacement stem cells in case of mucosal injury. In contrast, our findings indicate that intestinal stem cells, specified by expression of the Wnt signaling target LGR5, become the main source of progastrin production in early mouse and human intestinal adenomas. Collectively our results suggest that the previously identified feed-forward mechanisms between progastrin and Wnt signaling is a hallmark of early neoplastic transformation in mouse and human colonic adenomas.  相似文献   

6.
Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67 cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.  相似文献   

7.
8.
We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation.  相似文献   

9.
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age‐related retinal degenerative diseases.  相似文献   

10.
Regulation of stem cell (SC) proliferation is central to tissue homoeostasis, injury repair, and cancer development. Accumulation of replication errors in SCs is limited by either infrequent division and/or by chromosome sorting to retain preferentially the oldest 'immortal' DNA strand. The frequency of SC divisions and the chromosome-sorting phenomenon are difficult to examine accurately with existing methods. To address this question, we developed a strategy to count divisions of hair follicle (HF) SCs over time, and provide the first quantitative proliferation history of a tissue SC during its normal homoeostasis. We uncovered an unexpectedly high cellular turnover in the SC compartment in one round of activation. Our study provides quantitative data in support of the long-standing infrequent SC division model, and shows that HF SCs do not retain the older DNA strands or sort their chromosome. This new ability to count divisions in vivo has relevance for obtaining basic knowledge of tissue kinetics.  相似文献   

11.
《Cell Stem Cell》2020,26(4):569-578.e7
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

12.
《Cell Stem Cell》2022,29(8):1246-1261.e6
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

13.
Gene inactivation of the orphan G protein-coupled receptor LGR4, a paralogue of the epithelial-stem-cell marker LGR5, results in a 50% decrease in epithelial cell proliferation and an 80% reduction in terminal differentiation of Paneth cells in postnatal mouse intestinal crypts. When cultured ex vivo, LGR4-deficient crypts or progenitors, but not LGR5-deficient progenitors, die rapidly with marked downregulation of stem-cell markers and Wnt target genes, including Lgr5. Partial rescue of this phenotype is achieved by addition of LiCl to the culture medium, but not Wnt agonists. Our results identify LGR4 as a permissive factor in the Wnt pathway in the intestine and, as such, as a potential target for intestinal cancer therapy.  相似文献   

14.
Pancreatic cancer(PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells(CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on Dcl K1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.  相似文献   

15.
A general feature of stem cells is the ability to routinely proliferate to build, maintain, and repair organ systems. Accordingly, embryonic and germline, as well as some adult stem cells, produce the telomerase enzyme at various levels of expression. Our results show that, while muscle is a largely postmitotic tissue, the muscle stem cells (satellite cells) that maintain this biological system throughout adult life do indeed display robust telomerase activity. Conversely, primary myoblasts (the immediate progeny of satellite cells) quickly and dramatically downregulate telomerase activity. This work thus suggests that satellite cells, and early transient myoblasts, may be more promising therapeutic candidates for regenerative medicine than traditionally utilized myoblast cultures. Muscle atrophy accompanies human aging, and satellite cells endogenous to aged muscle can be triggered to regenerate old tissue by exogenous molecular cues. Therefore, we also examined whether these aged muscle stem cells would produce tissue that is “young” with respect to telomere maintenance. Interestingly, this work shows that the telomerase activity in muscle stem cells is largely retained into old age wintin inbred “long” telomere mice and in wild‐derived short telomere mouse strains, and that age‐specific telomere shortening is undetectable in the old differentiated muscle fibers of either strain. Summarily, this work establishes that young and old muscle stem cells, but not necessarily their progeny, myoblasts, are likely to produce tissue with normal telomere maintenance when used in molecular and regenerative medicine approaches for tissue repair. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
《Developmental cell》2022,57(16):1976-1994.e8
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

17.
Telomere stability and telomerase in mesenchymal stem cells   总被引:1,自引:0,他引:1  
Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important. In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall telomere length and the telomere length of individual chromosomes.  相似文献   

18.
19.
Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.  相似文献   

20.
《Cell Stem Cell》2022,29(5):826-839.e9
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号