首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.  相似文献   

2.
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 Å resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC50 values for trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.  相似文献   

3.
The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.  相似文献   

4.
NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel β-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution.  相似文献   

5.
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1–116, and the C-terminal one includes residues 117–125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid.  相似文献   

6.
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.  相似文献   

7.
The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3.  相似文献   

8.
Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1–212) containing the cyclohydrolase active site and the C-terminal domain (residues 222–523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.  相似文献   

9.
Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.  相似文献   

10.
The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the Oδ2–Cγ bond appears to be a double bond, with Oδ2 involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on Oδ1 atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mFobsDFcalc density above 2.5 σ next to Oδ1. As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pKa of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pKa histidine theory.  相似文献   

11.
Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.  相似文献   

12.
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19–1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a “catalytic” latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.  相似文献   

13.
The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.  相似文献   

14.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.  相似文献   

15.
Cysteine plays a major role in the antioxidative defense mechanisms of the human parasite Entameoba histolytica. The major route of cysteine biosynthesis in this parasite is the condensation of O-acetylserine with sulfide by the de novo cysteine biosynthetic pathway involving two key enzymes O-acetyl-L-serine sulfhydrylase (OASS) and serine acetyl transferase (SAT). The crystal structure of native OASS from Entameoba histolytica (EhOASS) has been determined at 1.86 A resolution and in complex with its product cysteine at 2.4 A resolution. In comparison with other known OASS structures, insertion in the N-terminal region and C-terminal helix reveal critical differences, which may influence the protein-protein interactions. In spite of lacking chloride binding site at the dimeric interface, the N-terminal extension compared with other known cysteine synthases, participates in dimeric interactions in an interesting domain swapping manner, enabling it to form a stronger dimer. Sulfate is bound in the active site of the native structure, which is replaced by cysteine in the cysteine bound form causing reorientation of the small N-terminal domain and thus closure of the active site. Ligand binding constants of OAS, Cys, and Met with EhOASS are comparable with other known OASS indicating similar active site arrangement and dynamics. The cysteine complexed structure represents the snapshot of the enzyme just before releasing the final product with a closed active site. The C-terminal helix positioning in the EhOASS may effect its interactions with EhSAT and thus influencing the formation of the cysteine synthase complex in this organism.  相似文献   

16.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   

17.
Biosynthesis of the mycobacterial cell wall relies on the activities of many enzymes, including several glycosyltransferases (GTs). The polymerizing galactofuranosyltransferase GlfT2 (Rv3808c) synthesizes the bulk of the galactan portion of the mycolyl-arabinogalactan complex, which is the largest component of the mycobacterial cell wall. We used x-ray crystallography to determine the 2.45-Å resolution crystal structure of GlfT2, revealing an unprecedented multidomain structure in which an N-terminal β-barrel domain and two primarily α-helical C-terminal domains flank a central GT-A domain. The kidney-shaped protomers assemble into a C4-symmetric homotetramer with an open central core and a surface containing exposed hydrophobic and positively charged residues likely involved with membrane binding. The structure of a 3.1-Å resolution complex of GlfT2 with UDP reveals a distinctive mode of nucleotide recognition. In addition, models for the binding of UDP-galactofuranose and acceptor substrates in combination with site-directed mutagenesis and kinetic studies suggest a mechanism that explains the unique ability of GlfT2 to generate alternating β-(1→5) and β-(1→6) glycosidic linkages using a single active site. The topology imposed by docking a tetrameric assembly onto a membrane bilayer also provides novel insights into aspects of processivity and chain length regulation in this and possibly other polymerizing GTs.  相似文献   

18.
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (β/α)8 barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.  相似文献   

19.
The ornithine hydroxylase from Pseudomonas aeruginosa (PvdA) catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine, which is subsequently formylated to generate the iron-chelating hydroxamates of the siderophore pyoverdin. PvdA belongs to the class B flavoprotein monooxygenases, which catalyze the oxidation of substrates using NADPH as the electron donor and molecular oxygen. Class B enzymes include the well studied flavin-containing monooxygenases and Baeyer-Villiger monooxygenases. The first two structures of a class B N-hydroxylating monooxygenase were determined with FAD in oxidized (1.9 Å resolution) and reduced (3.03 Å resolution) states. PvdA has the two expected Rossmann-like dinucleotide-binding domains for FAD and NADPH and also a substrate-binding domain, with the active site at the interface between the three domains. The structures have NADP(H) and (hydroxy)ornithine bound in a solvent-exposed active site, providing structural evidence for substrate and co-substrate specificity and the inability of PvdA to bind FAD tightly. Structural and biochemical evidence indicates that NADP+ remains bound throughout the oxidative half-reaction, which is proposed to shelter the flavin intermediates from solvent and thereby prevent uncoupling of NADPH oxidation from hydroxylated product formation.  相似文献   

20.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号