首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds (‘toxic waste hypothesis’). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.  相似文献   

2.
The ownership signature in mouse scent marks is involatile   总被引:7,自引:0,他引:7  
Male house mice advertise their territory ownership through urinary scent marks and use individual-specific patterns of major urinary proteins (MUPs) to discriminate between their own scent and that of other males. It is not clear whether recognition occurs through discrimination of the non-volatile proteins or protein-ligand complexes (direct model), or by the detection of volatile ligands that are released from MUPs (indirect model). To examine the mechanism underlying individual scent mark signatures, we compared investigatory and countermarking responses of male laboratory mice presented with male scent marks from a strain with a different MUP pattern, when they could contact the scent or when contact was prevented by a porous nitrocellulose sheet to which proteins bind. Mice investigated scent marks from other males whether these were covered or not, and biochemical analysis confirmed that the porous cover did not prevent the release of volatiles from scent marks. Having gained information through investigation, mice increased their own scent marking only if they had direct contact with another male's urine, failing to do this when contact was prevented. Individual signatures in scent marks thus appear to be carried by non-volatile proteins or by non-volatile protein-ligand complexes, rather than by volatiles emanating from the scent.  相似文献   

3.
Chemical signals from conspecifics can influence the behaviour and neuroendocrine axis of mice. Several different molecules are excreted with urine, depending on hormonal level, and can indicate the sex of the emitter. In male mice, these chemicals are the major urinary proteins (MUPs) and some small volatile odorant molecues that are found bound to them. We tested adult males for light avoidance behaviour in a two-chamber apparatus, with one light and one dark side, in the presence or absence of male urinary substances. The presence of chemical cues on either side of the cage was expected to modify light avoidance behaviour. The volatiles released from purified MUPs had the same effect as whole adult male urine, in that they induced a faster onset of exploration of the light compartment. The results show that mice can use the information carried by the odorant molecules released by MUPs to recognize the urine of male mice, and respond appropriately. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
The major urinary proteins (MUPs) are proteins secreted by the liver and filtered by the kidneys into the urine of adult male mice and rats, the MUPs of rats being also referred to as alpha(2U)-globulins. The MUP family also comprises closely related proteins excreted by exocrine glands of rodents, independently of their sex. The MUP family is an expression of a multi-gene family. There is complex hormonal and tissue-specific regulation of MUP gene expression. The multi-gene family and its outflow are characterized by a polymorphism which extends over species, strains, sexes, and individuals. There is evidence of evolutionary conservation of the genes and their outflow within the species and evidence of change between species. MUPs share the eight-stranded beta-barrel structure lining a hydrophobic pocket, common to lipocalins. There is also a high degree of structural conservation between mouse and rat MUPs. MUPs bind small natural odorant molecules in the hydrophobic pocket with medium affinity in the 10(4)-10(5) M(-1) range, and are excreted in the field, with bound odorants. The odorants are then released slowly in air giving a long lasting olfactory trace to the spot. MUPs seem to play complex roles in chemosensory signalling among rodents, functioning as odorant carriers as well as proteins that prime endocrine reactions in female conspecifics. Aphrodisin is a lipocalin, found in hamster vaginal discharge, which stimulates male copulatory behaviour. Aphrodisin does not seem to bind odorants and no polymorphism has been shown. Both MUPs and aphrodisin stimulate the vomeronasal organ of conspecifics.  相似文献   

5.
Mouse urine contains major urinary proteins (MUPs) that are not found in human urine. Therefore, even healthy mice exhibit proteinuria, unlike healthy humans, making it challenging to use mice as models for human diseases. It was also unknown whether dipsticks for urinalysis could measure protein concentrations precisely in urine containing MUPs. To resolve these problems, we produced MUP-knockout (Mup-KO) mice by removing the Mup gene cluster using Cas9 proteins and two guide RNAs and characterized the urinary proteins in these mice. We measured the urinary protein concentrations in Mup-KO and wild-type mice using a protein quantitation kit and dipsticks. We also examined the urinary protein composition using SDS-PAGE and two-dimensional electrophoresis (2DE). The urinary protein concentration was significantly lower (P<0.001) in Mup-KO mice (17.9 ± 1.8 mg/dl, mean ± SD, n=3) than in wild-type mice (73.7 ± 8.2 mg/dl, n=3). This difference was not reflected in the dipstick values, perhaps due to the low sensitivity to MUPs. This suggests that dipsticks have limited ability to measure changes in MUPs with precision. SDS-PAGE and 2DE confirmed that Mup-KO mice, like humans, had no MUPs in their urine, whereas wild-type mice had abundant MUPs in their urine. The absence of the masking effect of MUPs in 2DE would enable clear comparisons of urinary proteins, especially low-molecular-weight proteins. Thus, Mup-KO mice may provide a useful model for human urinalysis.  相似文献   

6.
Major urinary proteins (MUPs) in the urine of male house mice, Mus domesticus, bind the male signalling volatiles 2- sec -butyl-4,5-dihydrothiazole (thiazole) and 3,4-dehydro- exo -brevicomin (brevicomin) and slowly release these volatiles from urinary scent marks. To examine the role of urinary proteins and volatiles, either attached or unattached to the proteins, in competitive scent marking, we fractionated urine from isolated male BALB/c laboratory mice, Mus musculus, by size-exclusion chromatography into three pools. Pool I contained all of the urinary proteins and their bound ligands while pools II and III contained lower molecular weight components including unbound signalling volatiles. In experiment 1, pools I-III were streaked out on to absorbent paper (Benchkote) and introduced into enclosures housing single wild-caught male mice, together with a clean control surface. Each male was tested with fresh stimuli and with aged stimuli deposited 24 h previously. Only pool I stimulated significantly more countermarking and investigation than the control, attracting mice to investigate from a distance even when the rate of ligand release was considerably reduced after 24 h. Experiment 2 examined responses to pool I when this was fresh, aged by 7 days, or had been mixed with menadione to displace ligands from the proteins. Although all three protein stimuli were investigated and countermarked more than a clean control, the aged and menadione-treated pool I stimulated the strongest responses, despite containing the lowest levels of thiazole and brevicomin. Thus competitive countermarking is stimulated by proteins or by nonvolatile protein-ligand complexes in male urine, while release of volatile ligands attracts attention to a competitor's scent marks. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

7.
We previously found that both male and female aromatase knockout (ArKO) mice, which cannot synthesize estrogens due to a targeted mutation of the aromatase gene, showed less investigation of volatile body odors from anesthetized conspecifics of both sexes in Y-maze tests. We now ask whether ArKO mice are in fact capable of discriminating between and/or responding to volatile odors. Using habituation/dishabituation tests, we found that gonadectomized ArKO and wild-type (WT) mice of both sexes, which were tested without any sex hormone replacement, reliably distinguished between undiluted volatile urinary odors of either adult males or estrous females versus deionized water as well as between these two urinary odors themselves. However, ArKO mice of both sexes were less motivated than WT controls to investigate same-sex odors when they were presented last in the sequence of stimuli. In a second experiment, we compared the ability of ArKO and WT mice to respond to decreasing concentrations of either male or female urinary odors. We found a clear-cut sex difference in urinary odor attraction thresholds among WT mice: WT males failed to respond to urine dilutions higher than 1:20 by volume, whereas WT females continued to respond to urine dilutions up to 1:80. Male ArKO mice resembled WT females in their ability to respond to lower concentrations of urinary odors, raising the possibility that the observed sex difference among WT mice in urine attraction thresholds results from the perinatal actions of estrogen in the male nervous system. Female ArKO mice failed to show significant dishabituation responses to two (1:20 and 1:80) dilutions of female urine, perhaps, again, because of a reduced motivation to investigate less salient, same-sex urinary odors. Previously observed deficits in the preference of ArKO male and female mice to approach volatile body odors from conspecifics of either sex cannot be attributed to an inability of ArKO subjects to discriminate these odors according to sex but instead may reflect a deficient motivation to approach same-sex odors, especially when their concentration is low.  相似文献   

8.
Quantitative stir bar sorptive extraction methods, both in the aqueous and headspace modes, followed by thermal desorption gas chromatography-mass spectrometry were used to investigate individual variations in the volatile components of male and female ferret (Mustela furo) urine. The urinary profiles were further compared with volatile profiles of anal gland secretions of breeding male and female ferrets. Thirty volatile compounds were quantified in male and female urine. Among them, 2-methylquinoline was unique to male urine. Four ketones (4-heptanone, 2-heptanone, o-aminoacetophenone, and a dimethoxyacetophenone) and several nitrogen compounds (e.g., 2,5-dimethylpyrazine, quinoline, 4-methylquinazoline) and low levels of three unidentified nonsulfur compounds were significantly more abundant in males than in females. Quantitative comparison of 30 volatile urinary compounds showed several statistically significant differences between the sexes and individuals of the same sex. These findings suggest that ferrets may use urine marking for sex and individual recognitions. Ten of the 26 compounds identified in anal gland secretions from females and males were also found in urine. However, most of the major compounds (thietanes, dithiolanes, and indole) in anal glands were not present in urine. This suggests that urine may convey specific signals that differ from those of anal glands. Additionally, 10 volatiles (two aldehydes, five ketones, benzothiazole, 2-methylquinoline, and 4-methylquinazoline), not previously identified, were found in ferret anal gland secretions. Among the new compounds, o-aminoacetophenone was found only in males, while only traces of this compound were found in females. Similar results were previously obtained in anal glands of three other Mustela species. These findings provide new information about the constituents of urine and volatile components of anal gland secretions in ferrets.  相似文献   

9.
10.
N D Hastie  W A Held  J J Toole 《Cell》1979,17(2):449-457
We have purified a cDNA fragment complementary to the mRNA coding for one of the major urinary proteins (MUPs) synthesized in the mouse liver. Using this cDNA as a hybridization probe, we have shown that the level of MUP mRNA is lower in the livers of females and castrated males than in those of males. The addition of testosterone to females and castrated males results in an increase in the concentration of the mRNA to levels found in males. There are approximately 15 gene per haploid genome coding for the MUPs; this allows a possible new interpretation of some of the genetic data concerning the regulation of levels of the different MUPs in the urine (Szoka and Paigen, 1978). Finally, we have shown that mouse MUP and rat alpha 2u-globulin mRNA share common sequences, but that there are surprising differences in gene number and regulation of the genes in these two closely related animals.  相似文献   

11.
Sexual signals are expected to be costly to produce and maintain, thus ensuring that only males in good condition can sustain their expression at high levels. When males reach senescence they lose physiological function and condition, which could constrain their ability to invest in costly sexual signals, decreasing their attractiveness to mates. Furthermore, females may have evolved mating preferences that cause avoidance of senesced males to enhance fertilization success and viability of offspring. Among mammals, the size of antlers and other weapons can decrease with senescence, but changes in olfactory sexual signals have been largely unexplored. We examined changes in olfactory signals with senescence in house mice (Mus musculus domesticus), where males excrete volatile and involatile molecules in scent marks that elicit behavioural and priming responses in females. Compared to middle-aged males, the urine of senesced males contained a lower concentration of involatile signalling proteins (major urinary proteins or MUPs), and associated volatiles that bind to these proteins. The reduced intensity of male scent will affect the longevity of scent signals deposited in the environment and, accordingly, females were less attracted to urine from senesced males deposited 12 h previously. Females also discriminated against senesced males encountered behind a mesh barrier. These results reveal that investment in olfactory signalling is reduced during senescence and suggest that senesced males and their scent may be less attractive to females.  相似文献   

12.
By labeling liver protein in vivo with [3H]leucine, the relative biosynthetic rate has been measured for the major urinary proteins (MUPs), three closely related, androgen-regulated proteins that are synthesized in mouse liver, secreted into the bloodstream, and excreted into the urine. In livers from females of strain C57BL/6J, total MUP synthesis represents about 0.6–0.9% of the total protein synthesis; in males and testosterone-treated females of the same strain, synthesis increases to about 3.5–4.0% of the total. This 4-to 6-fold induction of total MUP synthesis is similar to the androgen-mediated increase in MUP-specific messenger RNA reported by others, and indicates that the previously observed 20- to 25-fold induction of total MUP excretion into urine is generated partly at the posttranslational level. By measuring the ratio of synthesis of the individual MUPs, it was determined that the testosterone-mediated change in the relative levels of the MUPs in urine reflects a similar change in the pattern of MUP synthesis, indicating that the posttranslational processes operate on the quantity, and not the nature, of MUPs excreted. A survey of seven inbred mouse strains revealed polymorphism for the rate of total MUP synthesis in untreated females. Two classes could be distinguished on the basis of a 3- to 5-fold difference in the rate. This variation does not correlate with variation at Mup-a, a locus that controls the ratio of the three MUPs in urine from androgen-induced mice. These findings are consistent with the notion that MUP expression is controlled by a variety of independently assorting genes.  相似文献   

13.
Morè L 《Chemical senses》2006,31(5):393-401
The major urinary proteins are a species-specific complex of proteins excreted by male mice that influence the reproductive behavior and the neuroendocrine condition of female mice through the olfactory system. The aim of this work is to determine their influence on ovulation. The major urinary proteins isolated from the urine of adult male mice were voided of bound odorants, dissolved at a physiological concentration in urine of prepubertal mice, and put on the nostril of reproductively cycling female mice housed in groups, the first day of estrus at 1100. The eggs shed in the oviducts were counted under dissection the morning of the second day of estrus. The results showed that 1) a single stimulus of the major urinary proteins increased ovulation nearly as much as the whole urine of male mice, 2) the effect was not elicited by male rat urine which contains different proteins, 3) a peptide with four residues of the amino-terminal sequence of the major urinary proteins stimulated ovulation, and 4) mice that had been isolated or had the vomeronasal organ (VNO) removed did not respond to the major urinary proteins and had a high spontaneous ovulation. The results suggest that the major urinary proteins activate the neuroendocrine system through the VNO and trigger ovulation.  相似文献   

14.
Previous research suggests that body odorants, including anal scents and urinary odors, contribute to sex discrimination and mate identification in European ferrets of both sexes. We assessed the possible role of the vomeronasal organ (VNO) in these functions by surgically removing the organ bilaterally in sexually experienced female ferrets. Lesioned (VNOx) and sham-operated control (VNOi) females reliably discriminated between male- and female-derived anal scent gland as well as fresh urinary odors in habituation/dishabituation tests. However, VNOi females spent significantly more time than VNOx subjects investigating male urinary odors in these tests. Also, VNOi females, but not VNOx subjects, preferred to investigate day-old male versus female urine spots as well as wooden blocks that had previously been soiled by male versus female ferrets. Both groups of female ferrets preferred to approach volatile odors from a breeding male instead of an estrous female in Y-maze tests and both groups showed similar levels of receptive sexual behavior in response to a male's neck grip. The VNO is apparently not required for olfactory sex discrimination or mate recognition in this carnivore, but instead may play a role in promoting continued contact with nonvolatile body odors previously deposited by opposite-sex conspecifics during territorial scent marking.  相似文献   

15.
Scent wars: the chemobiology of competitive signalling in mice   总被引:7,自引:0,他引:7  
Many mammals use scent marks to advertise territory ownership, but only recently have we started to understand the complexity of these scent signals and the types of information that they convey. Whilst attention has generally focused on volatile odorants as the main information molecules in scents, studies of the house mouse have now defined a role for a family of proteins termed major urinary proteins (MUPs) which are, of course, involatile. MUPs bind male signalling volatiles and control their release from scent marks. These proteins are also highly polymorphic and the pattern of polymorphic variants provides a stable ownership signal that communicates genome-derived information on the individual identity of the scent owner. Here we review the interaction between the chemical basis of mouse scents and the dynamics of their competitive scent marking behaviour, demonstrating how it is possible to provide reliable signals of the competitive ability and identity of individual males.  相似文献   

16.
The major urinary proteins (MUPs) of the mouse are encoded by a multigene family located at the Mup a locus on chromosome 4. Previous investigations have shown that the MUPs are synthesized in the liver, secreted and then excreted in the urine. We have found significant levels of MUP mRNA in several secretory tissues: the liver and the submaxillary, lachrymal and mammary glands. There are striking differences in hormonal and developmental regulation of MUP gene expression in these tissues. Furthermore, each tissue appears to express a characteristic pattern of MUP mRNAs. In particular, the lachrymal glands appear to express an entirely different set of MUP mRNAs. These results are discussed in relation to the organization of the MUP gene cluster and a possible function of the MUPs.  相似文献   

17.
The levels of expression and genomic organization of genes coding for the major urinary proteins (MUPs) were examined in several stocks of wild-derived mice. Levels of MUP mRNA in the liver varied considerably with M. musculus Brno and M. castaneus males having several-fold more MUP RNA than inbred C57BL/6 males, whereas M. hortulanus, M. caroli and M. cervicolor displayed levels much lower than C57BL/6. Analysis of RNA with MUP cDNAs specific to two different subfamilies of MUP genes revealed that M. caroli and M. cervicolor primarily expressed a MUP mRNA that was less abundant in C57BL/6, suggesting differential expression of subfamilies of genes within the MUP multigene complex. Although inbred males usually have five-fold more MUP mRNA than inbred females, male to female ratios for wild-derived stocks ranged from one to several hundred. Southern blots of genomic DNA hybridized to MUP subfamily probes revealed differences in restriction fragment sizes as well as possible variation in the number of MUP genes in some species. Analysis of urinary proteins from hybrids between C57BL/6 and M. spretus suggested that low MUP expression in M. spretus females was due to cis-acting genetic elements.  相似文献   

18.
Flehmen, a conspicuous posture characterized by eversion of the upper lip, facilitates the transfer of nonvolatile urinary chemicals to the vomeronasal organ and therefore has been implicated in the control of reproduction in ungulates. The ontogeny of urine sampling and flehmen was investigated in semi-free-ranging sable antelope, Hippotragus niger, at the National Zoological Park's Conservation and Research Center because behavioural evidence suggests that flehmen is a mechanism of reproductive synchronization among females. During the first year of life, flehmen rates increased with age in both sexes. Flehmen rates of female calves equalled those of adult females by 4 months of age. Male calves first exhibited flehmen at younger ages than did female calves and showed greater increases in flehmen rate during development. Both sexes exhibited flehmen primarily after sampling urine of female conspecifics as it was being voided. During the first 2 months of life, sable antelope preferred to sample urine of other calves, but by 1 year of age adult females were the preferred targets. Females approaching sexual maturity preferred to sample urine from postpartum females (presumably resuming oestrous cycling) rather than from pregnant females, as expected if they were attempting to synchronize oestrus with experienced females. Results are consistent with the hypothesis that flehmen serves to coordinate reproduction among females and further suggest that flehmen may affect reproductive maturation.  相似文献   

19.
主要尿蛋白(MUPs)属于脂质运载蛋白家族,具有保守的中心疏水β链桶状特征性结构域,具有调节种属内与种属间个体间化学信息交流的功能.MUPs主要在肝合成并分泌入血,作为载体与信息素等亲脂性小分子结合,延长其半衰期,一并从肾过滤排泄入尿液,延缓尿迹中信息素的挥发,从而延长信息素的作用时间.啮齿类动物的MUPs本身具有高度多态性,能够发挥类似信息素的作用直接编码个体信息,调节种属内的生物活动.此外,MUPs还能够发挥利它素的功能引起其它种属的畏惧反应.新近研究发现,MUPs受到机体营养状态的调节,与代谢性疾病及糖脂代谢密切相关,但机制尚不清楚.MUPs的功能和机制探索对于化学信息交流与糖脂代谢研究具有重要意义.本文旨在对MUPs的最新研究结果展开简要综述及讨论.  相似文献   

20.
This article is part of a Special Issue “Chemosignals and Reproduction”.This paper reviews the role of chemosignals in the socio-sexual interactions of female mice, and reports two experiments testing the role of pup-derived chemosignals and the male sexual pheromone darcin in inducing and promoting maternal aggression. Female mice are attracted to urine-borne male pheromones. Volatile and non-volatile urine fractions have been proposed to contain olfactory and vomeronasal pheromones. In particular, the male-specific major urinary protein (MUP) MUP20, darcin, has been shown to be rewarding and attractive to females. Non-urinary male chemosignals, such as the lacrimal protein ESP1, promote lordosis in female mice, but its attractive properties are still to be tested. There is evidence indicating that ESP1 and MUPs are detected by vomeronasal type 2 receptors (V2R).When a female mouse becomes pregnant, she undergoes dramatic changes in her physiology and behaviour. She builds a nest for her pups and takes care of them. Dams also defend the nest against conspecific intruders, attacking especially gonadally intact males. Maternal behaviour is dependent on a functional olfactory system, thus suggesting a role of chemosignals in the development of maternal behaviour. Our first experiment demonstrates, however, that pup chemosignals are not sufficient to induce maternal aggression in virgin females. In addition, it is known that vomeronasal stimuli are needed for maternal aggression. Since MUPs (and other molecules) are able to promote intermale aggression, in our second experiment we test if the attractive MUP darcin also promotes attacks on castrated male intruders by lactating dams. Our findings demonstrate that the same chemosignal, darcin, promotes attraction or aggression according to female reproductive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号