首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-2 microglobulin (β2m) is the light chain of class I major histocompatibility complex (MHC-I). β2m is an intrinsically amyloidogenic protein that can assemble into amyloid fibrils in a concentration dependent manner. β2m is accumulated in serum of haemodialysed patients, and deposited in the skeletal joints, causing dialysis related amyloidosis. Recent reports suggested that the loop comprised between β2m strands D and E is crucial for protein stability and for β2m propensity to aggregate as cross-β structured fibrils. In particular, the role of Trp60 for β2m stability has been highlighted by showing that the Trp60 → Gly β2m mutant is more thermo-stable and less prone to aggregation than the wild type protein. On the contrary the Asp59 → Pro β2m mutant shows lower Tm and stronger tendency to fibril aggregation. To further analyse such properties, the Trp60 → Val β2m mutant has been expressed and purified; the propensity to fibrillar aggregation and the folding stability have been assessed, and the X-ray crystal structure determined to 1.8 Å resolution. The W60V mutant structural features are discussed, focusing on the roles of the DE loop and of residue 60 in relation to β2m structure and its amyloid aggregation trends.  相似文献   

2.
β2 microglobulin (β2m) is the light chain of class‐I major histocompatibility complex (MHC‐I). Its accumulation in the blood of patients affected by kidney failure leads to amyloid deposition around skeletal joints and bones, a severe condition known as Dialysis Related Amyloidosis (DRA). In an effort to dissect the structural determinants of β2m aggregation, several β2m mutants have been previously studied. Among these, three single‐residue mutations in the loop connecting strands D and E (W60G, W60V, D59P) have been shown to affect β2m amyloidogenic properties, and are here considered. To investigate the biochemical and biophysical properties of wild‐type (w.t.) β2m and the three mutants, we explored thermal unfolding by Trp fluorescence and circular dichroism (CD). The W60G mutant reveals a pronounced increase in conformational stability. Protein oligomerization and reduction kinetics were investigated by electrospray‐ionization mass spectrometry (ESI‐MS). All the mutations analyzed here reduce the protein propensity to form soluble oligomers, suggesting a role for the DE‐loop in intermolecular interactions. A partially folded intermediate, which may be involved in protein aggregation induced by acids, accumulates for all the tested proteins at pH 2.5 under oxidizing conditions. Moreover, the kinetics of disulfide reduction reveals specific differences among the tested mutants. Thus, β2m DE‐loop mutations display long‐range effects, affecting stability and structural properties of the native protein and its low‐pH intermediate. The evidence presented here hints to a crucial role played by the DE‐loop in determining the overall properties of native and partially folded β2m.  相似文献   

3.
To study the effects of a point mutation found in Pelizaeus-Merzbacher disease (PMD) on the physicochemical and structural properties of the extracellular loop 4 of the myelin proteolipid protein (PLP), we synthesized the peptide PLP(181-230)Pro215 and one mutant PLP(181-230)Ser215 with regioselective formation of the two disulphide bridges Cys200-Cys219 and Cys183-Cys227. As conventional amino acid building blocks failed to give crude peptides of good quality we had to optimize the synthesis by introducing pseudoproline dipeptide building blocks during the peptide elongation. In peptide Pro215 the first bridge Cys200-Cys219 was obtained after air oxidation, but in peptide Ser215 because of aggregation, dimethyl sulfoxide (DMSO) oxidation had to be used. The second bridge Cys183-Cys227 was obtained by iodine oxidation of both Cys (acetamidomethyl, Acm)-protected peptides. The secondary structures of the parent and mutant loops were analysed by circular dichroism (CD) in the presence of trifluoroethanol (TFE) and sodium dodecyl sulphate (SDS) as a membrane mimetic. Analysis of the spectra showed that the content of alpha-helix and beta-sheet varied differently for both peptides in TFE and SDS solutions, demonstrating the sensitivity of their conformation to the environment and the differences in their secondary structure. The ability of both peptides to insert into the SDS micelles was assayed by intrinsic tryptophan fluorescence.  相似文献   

4.
Both the disulphide bond (Cys192-Cys199) and the proline-rich motif (Pro193ProAsnPro196) in the long loop connecting the alpha4-alpha5 transmembrane hairpin of the Cry4Aa mosquito-larvicidal protein have been found to be unique among the Bacillus thuringiensis Cry delta-endotoxins. In this study, their structural requirements for larvicidal activity of the Cry4Aa toxin were investigated. C192A and C199A mutant toxins were initially generated and over-expressed in Escherichia coli cells as 130-kDa protoxins at levels comparable to that of the wild-type toxin. When their activities against Aedes aegypti larvae were determined, Escherichia coli cells expressing each mutant toxin retained the high-level toxicity. Further mutagenic analysis of the PPNP motif revealed that an almost complete loss in larvicidal activity was observed for the C199A/P193A double mutant, whereas a small reduction in toxicity was shown for the C199A/P194A and C199A/P196A mutants. Increasing the flexibility of the alpha4-alpha5 loop through C199A/P193G, C199A/P194G/P196A, C199A/P194A/P196G, and C199A/P194G/P196G mutations significantly decreased the larvicidal activity. Similar to the wild-type protoxin, all mutant toxins were structurally stable upon solubilisation and trypsin activation in carbonate buffer, pH 9.0. These findings are the first biological evidence for a structural function in larvicidal activity of the unique disulphide bridge as well as the proline-rich motif within the alpha4-alpha5 loop of the Cry4Aa toxin.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

6.
We prepared two dissected fragments of hen lysozyme and examined whether or not these two fragments associated to form a native-like structure. One (Fragment I) is the peptide fragment Asn59-homoserine-105 containing Cys64-Cys80 and Cys76-Cys94. The other (Fragment II) is the peptide fragment Lys1-homoserine-58 connected by two disulfide bridges, Cys6-Cys127 and Cys30-Cys115, to the peptide fragment Asn106-Leu129. It was found that the Fragment I immobilized in the cuvette formed an equimolar complex with Fragment II (K(d) = 3.3x10(-4) M at pH 8 and 25 degrees C) by means of surface plasmon resonance. Moreover, from analyses by circular dichroism spectroscopy and ion-exchange chromatography of the mixture of Fragments I and II at pH 8 under non-reducing conditions, it was suggested that these fragments associated to give the native-like structure. However, the mutant Fragment I in which Cys64-Cys80 and Cys76-Cys94 are lacking owing to the mutation of Cys to Ala, or the mutant fragment in which Trp62 is mutated to Gly, did not form the native-like species with Fragment II, because the mutant Fragment I derived from mutant lysozymes had no local conformation due to mutations. Considering our previous results where the preferential oxidation of two inside disulfide bonds, Cys64-Cys80 and Cys76-Cys94, occurred in the refolding of the fully reduced Fragment I, we suggest that the peptide region corresponding to Fragment I is an initiation site for hen lysozyme folding.  相似文献   

7.
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein.  相似文献   

8.
Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family.  相似文献   

9.
Azurin is a cupredoxin, which functions as an electron carrier. Its fold is dominated by a beta-sheet structure. In the present study, azurin serves as a model system to investigate the importance of a conserved disulphide bond for protein stability and folding/unfolding. For this purpose, we have examined two azurin mutants, the single mutant Cys3Ser, which disrupts azurin's conserved disulphide bond, and the double mutant Cys3Ser/Ser100Pro, which contains an additional mutation at a site distant from the conserved disulphide. The crystal structure of the azurin double mutant has been determined to 1.8 A resolution(2), with a crystallographic R-factor of 17.5% (R(free)=20.8%). A comparison with the wild-type structure reveals that structural differences are limited to the sites of the mutations. Also, the rates of folding and unfolding as determined by CD and fluorescence spectroscopy are almost unchanged. The main difference to wild-type azurin is a destabilisation by approximately 20 kJ x mol(-1), constituting half the total folding energy of the wild-type protein. Thus, the disulphide bond constitutes a vital component in giving azurin its stable fold.  相似文献   

10.
A thermophilic serine protease, Aqualysin I, from Thermus aquaticus YT-1 has two disulphide bonds, which are also found in a psychrophilic serine protease from Vibrio sp. PA-44 and a proteinase K-like enzyme from Serratia sp. at corresponding positions. To understand the significance of these disulphide bonds in aqualysin I, we prepared mutants C99S, C194S and C99S/C194S (WSS), in which Cys69-Cys99, Cys163-Cys194 and both of these disulphide bonds, respectively, were disrupted by replacing Cys residues with Ser residues. All mutants were expressed stably in Escherichia coli. The C99S mutant was 68% as active as the wild-type enzyme at 40 degrees C in terms of k(cat) value, while C194S and WSS were only 6 and 3%, respectively, as active, indicating that disulphide bond Cys163-Cys194 is critically important for maintaining proper catalytic site conformation. Mutants C194S and WSS were less thermostable than wild-type enzyme, with a half-life at 90 degrees C of 10 min as compared to 45 min of the latter and with transition temperatures on differential scanning calorimetry of 86.7 degrees C and 86.9 degrees C, respectively. Mutant C99S was almost as stable as the wild-type aqualysin I. These results indicate that the disulphide bond Cys163-Cys194 is more important for catalytic activity and conformational stability of aqualysin I than Cys67-Cys99.  相似文献   

11.
Amyloidosis associated to hemodialysis is caused by persistently high β2-microglobulin (β2m) serum levels. β2m is an intrinsically amyloidogenic protein whose capacity to assemble into amyloid fibrils in vitro and in vivo is concentration dependent; no β2m genetic variant is known in the human population. We investigated the roles of two evolutionary conserved Trp residues in relation to β2m structure, function and folding/misfolding by means of a combined biophysical and functional approach. We show that Trp60 plays a functional role in promoting the association of β2m in class I major histocompatibility complex; it is exposed to the solvent at the apex of a protein loop in order to accomplish such function. The Trp60 → Gly mutation has a threefold effect: it stabilizes β2m, inhibits β2m amyloidogenic propensity and weakens the interaction with the class I major histocompatibility complex heavy chain. On the contrary, Trp95 is buried in the β2m core; the Trp95 → Gly mutation destabilizes the protein, which is unfolded in solution, yielding nonfibrillar β2m aggregates. Trp60 and Trp95 therefore play differential and complementary roles in β2m, being relevant for function (Trp60) and for maintenance of a properly folded structure (Trp95) while affecting in distinct ways the intrinsic propensity of wild-type β2m towards self-aggregation into amyloid fibrils.  相似文献   

12.
Endothelin-1 (ET-1), a 21-residue vasoconstrictor peptide possessing four cysteinyl residues at positions 1, 3, 11 and 15, was synthesized by random oxidation of a tetrahydro-ET-1. On reverse-phase high-performance liquid chromatography, crude product was shown to be a mixture of two disulphide isomers. A method was developed to determine the disulphide structure of the isomers. The method consisted of (a) limited digestion with chymotrypsin, (b) cleavage with cyanogen bromide and (c) manual Edman degradation. Through this procedure, each isomer afforded specific fragments containing a single disulphide bond, which were identified by fast atom bombardment mass spectrometry. Isomer 1, the minor component, afforded a fragment containing Cys 3 and Cys 15, and isomer 2, the major component, afforded fragments containing Cys 3 and Cys 11. Since little disulphide exchange was observed, it could be concluded clearly that the disulphide bond pairs in isomer 1 were Cys 1-Cys 11 and Cys 3-Cys 15, while those in isomer 2 were Cys 1-Cys 15 and Cys 3-Cys 11 (the same as natural ET-1). The procedure was successfully applied to two synthetic analogues, [Gly18]-ET-1 and [Pro16]-ET-1.  相似文献   

13.
Arai M  Hamel P  Kanaya E  Inaka K  Miki K  Kikuchi M  Kuwajima K 《Biochemistry》2000,39(12):3472-3479
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state.  相似文献   

14.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

15.
Pheromone-binding protein (PBP) and general odorant-binding proteins (GOBPs) were purified from the antennae of Bombyx mori and structurally characterised. The amino acid sequence of GOBP-2 has been corrected. The disulphide arrangements of PBP and GOBP-2 have been determined by a combined mass spectrometric/Edman degradation approach. The same cysteine pairings, Cys19-Cys54, Cys50-Cys108, and Cys97-Cys117, were found in both proteins, suggesting that such patterns occur commonly throughout this family of molecules. This arrangement of disulphide bonds indicates that the three-dimensional structure of insect OBPs is defined by three loops, rich in helical content, which can vary in size and charge distribution from one protein to another.  相似文献   

16.
Zhang Z  Boyle PC  Lu BY  Chang JY  Wriggers W 《Biochemistry》2006,45(51):15269-15278
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extra-cellular domains. Human EGF is a small, single-chain protein comprising three distinct loops (A, B, and C), which are connected by three disulfide bridges (Cys6-Cys20, Cys14-Cys31, and Cys33-Cys42). These disulfide bridges are essential for structural stability and biological activity. EGF was extensively studied by disulfide scrambling, an experimental technique for the conformational entrapment of intermediate states, which allows us to study the folding pathway of proteins containing disulfide bonds. The experimental results showed that there is a major 2-disulfide intermediate (denoted EGF-II) and that the native disulfide bonding pattern is less prevalent in one of the mutants. In this article, we investigated for the first time the solution conformations of wild-type EGF, EGF-II, and the mutant S9C through extensive molecular dynamics (MD) simulations in water using both the standard MD technique and a recently developed amplified-collective-motion (ACM) sampling method. Compared to standard MD simulations, we achieved a much more enhanced sampling by the ACM simulations, and the structures were sufficiently relaxed to estimate configurational entropies. The simulation results suggest a predominantly entropic folding pathway governed by the disorder of three functional loop regions. Although EGF-II exhibits two native disulfide bonds (Cys14-Cys31 and Cys33- Cys42), its large configurational entropy inhibits a direct transition to the native structure in the folding process. When Ser9 is mutated into Cys, a non-native disulfide bridge Cys9- Cys20 is slightly more favorable than the native Cys6-Cys20 because a less constrained N-terminus affords larger entropy. Isomers that are functionally less active also exhibit a more localized dynamics of the functional loop regions, which may suggest a possible mechanism for the modulation of EGF activity.  相似文献   

17.
Denatured and reduced N-terminal extended insulin-like growth factor-1 (AE-IGF-1) was purified from Escherichia coli extracts and subjected to in vitro folding. The renaturation process was shown to be a function of the redox potential of the solution. Folding by different methods had no significant effect on the renaturation. A maximal yield of 60% (w/w) was obtained. The folded AE-IGF-1 was enzymatically converted to IGF-1. The major by-product (20% w/w) was identified as scrambled IGF-1. Enzymatic digestion at alkaline and acidic pH suggested two possible disulphide bond arrangements; (i) Cys6-Cys47, Cys18-Cys61, Cys48-Cys52; or (ii) Cys6-Cys52, Cys18-Cys61, Cys47 and Cys48 being in their reduced forms. Energy minimization and molecular modelling suggested that the scrambled IGF-1, having reduced cysteines at positions 47 and 48, was the energetically most stable conformation of the two.  相似文献   

18.
β2-Microglobulin (β2-m), a protein responsible for dialysis-related amyloidosis, adopts a typical immunoglobulin domain fold with the N-terminal peptide bond of Pro32 in a cis isomer. The refolding of β2-m is limited by the slow trans-to-cis isomerization of Pro32, implying that intermediates with a non-native trans-Pro32 isomer are precursors for the formation of amyloid fibrils. To obtain further insight into the Pro-limited folding of β2-m, we studied the Gdn-HCl-dependent unfolding/refolding kinetics using two mutants (W39 and P32V β2-ms) as well as the wild-type β2-m. W39 β2-m is a triple mutant in which both of the authentic Trp residues (Trp60 and Trp95) are replaced by Phe and a buried Trp common to other immunoglobulin domains is introduced at the position of Leu39 (i.e., L39W/W60F/W95F). W39 β2-m exhibits a dramatic quenching of fluorescence upon folding, enabling a detailed analysis of Pro-limited unfolding/refolding. On the other hand, P32V β2-m is a mutant in which Pro32 is replaced by Val, useful for probing the kinetic role of the trans-to-cis isomerization of Pro32. A comparative analysis of the unfolding/refolding kinetics of these mutants including three types of double-jump experiments revealed the prolyl isomerization to be coupled with the conformational transitions, leading to apparently unusual kinetics, particularly for the unfolding. We suggest that careful consideration of the kinetic coupling of unfolding/refolding and prolyl isomerization, which has tended to be neglected in recent studies, is essential for clarifying the mechanism of protein folding and, moreover, its biological significance.  相似文献   

19.
Crystal structures, at 1.7 Å resolution, were solved for complexes between each of two chemically synthesized partially folded analogues of bovine pancreatic trypsin inhibitor (BPTI) with the proteolytically inactive rat trypsin mutant S195A. The BPTI analogue termed [14-38]Abu retains only the disulfide bond between Cys14 and Cys38, while Cys5, Cys30, Cys51, and Cys55 are replaced by isosteric α-amino-n-butyric acid residues. The analogue K26P,A27D[14-38]Abu contains two further replacements, by statistically favored residues, in the type I β-turn that has been suggested to be a main site for initiation of BPTI folding. As a control, the structure of the complex between S195A trypsin and wild-type BPTI was also solved. Despite significant differences in the degree of structure detected among these three BPTIs in solution by several biophysical techniques, their tertiary folds once bound to S195A trypsin in a crystalline lattice are essentially superimposable.  相似文献   

20.
Lu BY  Jiang C  Chang JY 《Biochemistry》2005,44(45):15032-15041
The structure of human epidermal growth factor (EGF, 53 amino acids) comprises three distinct loops (A, B, and C) connected correspondingly by the three native disulfide bonds, Cys(6)-Cys(20), Cys(14)-Cys(31), and Cys(33)-Cys(42). The connection of Cys(6) and Cys(20) forming the N-terminal A loop is essential for the biological activity of EGF [Barnham et al. (1998) Protein Sci. 7, 1738-1749] and has also been shown to represent a major kinetic trap in the oxidative folding of EGF [Chang et al. (2001) J. Biol. Chem. 276, 4845-4852]. To further understand the chemical nature of this kinetic trap, we have prepared three EGF mutants each with a single Ser --> Cys mutation at Ser residues (Ser(2), Ser(4), and Ser(9)) flanking Cys(6). This allows competition between Cys(6) and mutated Cys(2), Cys(4), and Cys(9) to link with Cys(20) and to form EGF isomers containing different sizes of the A loop. The results show that, in the cases of EGF(S2C) and EGF(S4C), native Cys(6)-Cys(20) is favored over Cys(2)-Cys(20) and Cys(4)-Cys(20) by 4.5- and 9-fold, respectively, in the state of equilibrium. However, in the case of EGF(S9C), a non-native Cys(9)-Cys(20) is thermodynamically more stable than the native Cys(6)-Cys(20) by a free-energy difference (DeltaG degrees ) of 1.12 kcal/mol. Implications of these data in the formation of kinetic trap of EGF folding are discussed. Stabilized isomers of EGF were further generated from denaturation of wild-type and mutant EGF via the method of disulfide scrambling. Properties of these diverse isomers of EGF, including their isomerization, stability, unfolding, refolding, and disulfide structures, are described in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号