首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior.

Methodology/Principal Findings

We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates.

Conclusions/Significance

Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.  相似文献   

2.

Background

Lévy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails, such that clusters of short steps are connected by rare long steps. Lévy walks maximise search efficiency of mobile foragers. Recently, several studies raised some concerns about the reliability of the statistical analysis used in previous analyses. Further, it is unclear whether Lévy walks represent adaptive strategies or emergent properties determined by the interaction between foragers and resource distribution. Thus two fundamental questions still need to be addressed: the presence of Lévy walks in the wild and whether or not they represent a form of adaptive behaviour.

Methodology/Principal Findings

We studied 235 paths of solitary and clustered (i.e. foraging in group) fallow deer (Dama dama), exploiting the same pasture. We used maximum likelihood estimation for discriminating between a power-tailed distribution and the exponential alternative and rank/frequency plots to discriminate between Lévy walks and composite Brownian walks. We showed that solitary deer perform Lévy searches, while clustered animals did not adopt that strategy.

Conclusion/Significance

Our demonstration of the presence of Lévy walks is, at our knowledge, the first available which adopts up-to-date statistical methodologies in a terrestrial mammal. Comparing solitary and clustered deer, we concluded that the Lévy walks of solitary deer represent an adaptation maximising encounter rates with forage resources and not an epiphenomenon induced by a peculiar food distribution.  相似文献   

3.

Background

Predators can impact ecosystems through trophic cascades such that differential patterns in habitat use can lead to spatiotemporal variation in top down forcing on community dynamics. Thus, improved understanding of predator movements is important for evaluating the potential ecosystem effects of their declines.

Methodology/Principal Findings

We satellite-tagged an apex predator (bull sharks, Carcharhinus leucas) and a sympatric mesopredator (Atlantic tarpon, Megalops atlanticus) in southern Florida waters to describe their habitat use, abundance and movement patterns. We asked four questions: (1) How do the seasonal abundance patterns of bull sharks and tarpon compare? (2) How do the movement patterns of bull sharks and tarpon compare, and what proportion of time do their respective primary ranges overlap? (3) Do tarpon movement patterns (e.g., straight versus convoluted paths) and/or their rates of movement (ROM) differ in areas of low versus high bull shark abundance? and (4) Can any general conclusions be reached concerning whether tarpon may mitigate risk of predation by sharks when they are in areas of high bull shark abundance?

Conclusions/Significance

Despite similarities in diet, bull sharks and tarpon showed little overlap in habitat use. Bull shark abundance was high year-round, but peaked in winter; while tarpon abundance and fishery catches were highest in late spring. However, presence of the largest sharks (>230 cm) coincided with peak tarpon abundance. When moving over deep open waters (areas of high shark abundance and high food availability) tarpon maintained relatively high ROM in directed lines until reaching shallow structurally-complex areas. At such locations, tarpon exhibited slow tortuous movements over relatively long time periods indicative of foraging. Tarpon periodically concentrated up rivers, where tracked bull sharks were absent. We propose that tarpon trade-off energetic costs of both food assimilation and osmoregulation to reduce predation risk by bull sharks.  相似文献   

4.

Background

Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple Brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a Brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention.

Methodology/Principal Findings

We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a Brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years.

Conclusions/Significance

Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals'' behaviour but also individuals'' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.  相似文献   

5.

Background

Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW).

Methodology/Principal Findings

Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation).

Conclusions/Significance

Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.  相似文献   

6.

Background

The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama.

Methodology and Principal Findings

Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI.

Conclusions and Significance

We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI.  相似文献   

7.

Background

Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before.

Methodology/Principal Findings

The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km2 in a non-fragmented forest and 600 km2 in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another.

Conclusions/Significance

Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans.  相似文献   

8.

Background

Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error.

Methods

I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases.

Results

Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180° or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters.

Conclusions

Measurement error must be considered as a possible cause of 180° turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.  相似文献   

9.

Background

Recent findings indicate that cougars (Puma concolor) are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL) region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management.

Methodology/Principal Findings

Using Geographic Information Systems (GIS), we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2) of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013.

Conclusions/Significance

Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region.  相似文献   

10.

Background

The hybrid zone between the primarily forest-dwelling American toad, Anaxyrus americanus, and the prairie-adapted Canadian toad, A. hemiophrys, in southeastern Manitoba is known to have shifted its position during the past 50 years. Hybrid zones are areas of interbreeding between species and their movement across a landscape should reflect their underlying dynamics and environmental change. However, empirical demonstrations of hybrid zone movements over long periods of time are rare. This hybrid zone is dominated by individuals of intermediate morphology and genetic composition. We sought to determine if it had continued to move and if that movement was associated with shifts in habitat, as predicted.

Methodology/Principle Findings

We used variation in the toads’ most diagnostic morphological feature, the separation between their interorbital cranial crests, to determine the geographic position of the hybrid zone center at four times between 1960 and 2009 using maximum likelihood methods. The hybrid zone center moved west by 38 km over 19 years and then east again by 10 km over the succeeding 29 years. The position of the hybrid zone did not track either the direction or the magnitude of movement of the forest-prairie habitat transition over the same time period.

Conclusions/Significance

This is the first reported evidence of oscillation in the position of a hybrid zone. The back and forth movement indicates that neither species maintains a selective advantage over the other in the long term. However, the movement of the hybrid zone was not bounded by the breadth of the habitat transition. Its oscillation suggests that the hybrid zone is better described as being elastically tethered to the habitat transition.  相似文献   

11.

Background

Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat.

Methodology/Principal Findings

We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance.

Conclusions/Significance

Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies.  相似文献   

12.

Purpose

To evaluate a simplified method to measure choroidal thickness (CT) using commercially available enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT).

Methods

We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC) and Bland-Altman plot analyses.

Results

Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97) and inter-grader reliability (ICC: 0.93 to 0.97) were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94) and inter-grader reliability (ICC: 0.90 to 0.93) for all the measured locations is lower. Using adaptive compensation, the mean differences (95% limits of agreement) for intra- and inter-grader sub-foveal CT measurements were −1.3 (−3.33 to 30.8) µm and −1.2 (−36.6 to 34.2) µm, respectively.

Conclusions

The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT measurement.  相似文献   

13.

Introduction

Indirect reduction of dia-/metaphyseal fractures with minimally invasive implant application bridges the fracture zone in order to protect the soft-tissue and blood supply. The goal of this fixation strategy is to allow stable motion at the fracture site to achieve indirect bone healing with callus formation. However, concerns have arisen that the high axial stiffness and eccentric position of locked plating constructs may suppress interfragmentary motion and callus formation, particularly under the plate. The reason for this is an asymmetric fracture movement. The biological need for sufficient callus formation and secondary bone healing is three-dimensional micro movement in the fracture zone. The DLS was designed to allow for increased fracture site motion. The purpose of the current study was to determine the biomechanical effect of the DLS_5.0.

Methods

Twelve surrogate bone models were used for analyzing the characteristics of the DLS_5.0. The axial stiffness and the interfragmentary motion of locked plating constructs with DLS were compared to conventional constructs with Locking Head Screws (LS_5.0). A quasi-static axial load of 0 to 2.5 kN was applied. Relative motion was measured.

Results

The dynamic system showed a biphasic axial stiffness distribution and provided a significant reduction of the initial axial stiffness of 74.4%. Additionally, the interfragmentary motion at the near cortex increased significantly from 0.033 mm to 0.210 mm (at 200N).

Conclusions

The DLS may ultimately be an improvement over the angular stable plate osteosynthesis. The advantages of the angular stability are not only preserved but even supplemented by a dynamic element which leads to homogenous fracture movement and to a potentially uniform callus distribution.  相似文献   

14.

Background

Genome comparisons between closely related species often show non-conserved regions across chromosomes. Some of them are located in specific regions of chromosomes and some are even confined to one or more entire chromosomes. The origin and biological relevance of these non-conserved regions are still largely unknown. Here we used the genome of Fusarium graminearum to elucidate the significance of non-conserved regions.

Results

The genome of F. graminearum harbours thirteen non-conserved regions dispersed over all of the four chromosomes. Using RNA-Seq data from the mycelium of F. graminearum, we found weakly expressed regions on all of the four chromosomes that exactly matched with non-conserved regions. Comparison of gene expression between two different developmental stages (conidia and mycelium) showed that the expression of genes in conserved regions is stable, while gene expression in non-conserved regions is much more influenced by developmental stage. In addition, genes involved in the production of secondary metabolites and secreted proteins are enriched in non-conserved regions, suggesting that these regions could also be important for adaptations to new environments, including adaptation to new hosts. Finally, we found evidence that non-conserved regions are generated by sequestration of genes from multiple locations. Gene relocations may lead to clustering of genes with similar expression patterns or similar biological functions, which was clearly exemplified by the PKS2 gene cluster.

Conclusions

Our results showed that chromosomes can be functionally divided into conserved and non-conserved regions, and both could have specific and distinct roles in genome evolution and regulation of gene expression.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-191) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD.

Methods

To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects.

Results

Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02).

Conclusions

Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.  相似文献   

16.

Background

Neonatal mortality contributes a large proportion towards early childhood mortality in developing countries, with considerable geographical variation at small areas within countries.

Methods

A geo-additive logistic regression model is proposed for quantifying small-scale geographical variation in neonatal mortality, and to estimate risk factors of neonatal mortality. Random effects are introduced to capture spatial correlation and heterogeneity. The spatial correlation can be modelled using the Markov random fields (MRF) when data is aggregated, while the two dimensional P-splines apply when exact locations are available, whereas the unstructured spatial effects are assigned an independent Gaussian prior. Socio-economic and bio-demographic factors which may affect the risk of neonatal mortality are simultaneously estimated as fixed effects and as nonlinear effects for continuous covariates. The smooth effects of continuous covariates are modelled by second-order random walk priors. Modelling and inference use the empirical Bayesian approach via penalized likelihood technique. The methodology is applied to analyse the likelihood of neonatal deaths, using data from the 2000 Malawi demographic and health survey. The spatial effects are quantified through MRF and two dimensional P-splines priors.

Results

Findings indicate that both fixed and spatial effects are associated with neonatal mortality.

Conclusions

Our study, therefore, suggests that the challenge to reduce neonatal mortality goes beyond addressing individual factors, but also require to understanding unmeasured covariates for potential effective interventions.  相似文献   

17.

Background

Not only is compulsive checking the most common symptom in Obsessive Compulsive Disorder (OCD) with an estimated prevalence of 50–80% in patients, but approximately ∼15% of the general population reveal subclinical checking tendencies that impact negatively on their performance in daily activities. Therefore, it is critical to understand how checking affects attention and memory in clinical as well as subclinical checkers. Eye fixations are commonly used as indicators for the distribution of attention but research in OCD has revealed mixed results at best.

Methodology/Principal Finding

Here we report atypical eye movement patterns in subclinical checkers during an ecologically valid working memory (WM) manipulation. Our key manipulation was to present an intermediate probe during the delay period of the memory task, explicitly asking for the location of a letter, which, however, had not been part of the encoding set (i.e., misleading participants). Using eye movement measures we now provide evidence that high checkers’ inhibitory impairments for misleading information results in them checking the contents of WM in an atypical manner. Checkers fixate more often and for longer when misleading information is presented than non-checkers. Specifically, checkers spend more time checking stimulus locations as well as locations that had actually been empty during encoding.

Conclusions/Significance

We conclude that these atypical eye movement patterns directly reflect internal checking of memory contents and we discuss the implications of our findings for the interpretation of behavioural and neuropsychological data. In addition our results highlight the importance of ecologically valid methodology for revealing the impact of detrimental attention and memory checking on eye movement patterns.  相似文献   

18.
19.

Background

Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects.

Methodology/Principal Findings

We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%).

Conclusions/Significance

Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals.  相似文献   

20.

Background

Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion.

Methodology/Principal Findings

We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin.

Conclusions/Significance

Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号