首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Müller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Müller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.

Methodology/Principal Findings

We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Müller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Müller glial cells, several other inner retinal cell types were transduced. To obtain Müller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1−/− retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Müller glial cells aligning retinal blood vessels.

Conclusions/Significance

Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells.  相似文献   

2.

Objective

Patients undergoing immune modulatory therapies for the treatment of autoimmune diseases such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS patients, are in the high risk group of developing progressive multifocal leukoencephalopathy (PML), an often lethal disease of the brain characterized by lytic infection of oligodendrocytes in the central nervous system (CNS) with JC virus (JCV). The immune system plays an important regulatory role in controlling JCV reactivation from latent sites by limiting viral gene expression and replication. However, little is known regarding the molecular mechanisms responsible for this regulation.

Methods and Results

Here, we investigated the impact of soluble immune mediators secreted by activated PBMCs on viral replication and gene expression by cell culture models and molecular virology techniques. Our data revealed that viral gene expression and viral replication were suppressed by soluble immune mediators. Further studies demonstrated that soluble immune mediators secreted by activated PBMCs inhibit viral replication induced by T-antigen, the major viral regulatory protein, by suppressing its expression in glial cells. This unexpected suppression of T-antigen was mainly associated with the suppression of translational initiation. Cytokine/chemokine array studies using conditioned media from activated PBMCs revealed several candidate cytokines with possible roles in this regulation. Among them, only IFN-γ showed a robust inhibition of T-antigen expression. While potential roles for IFN-β, and to a lesser extent IFN-α have been described for JCV, IFN-γ has not been previously implicated. Further analysis of IFN-γ signaling pathway revealed a novel role of Jak1 signaling in control of viral T-antigen expression. Furthermore, IFN-γ suppressed JCV replication and viral propagation in primary human fetal glial cells, and showed a strong anti-JCV activity.

Conclusions

Our results suggest a novel role for IFN-γ in the regulation of JCV gene expression via downregulation of the major viral regulatory protein, T-antigen, and provide a new avenue of research to understand molecular mechanisms for downregulation of viral reactivation that may lead to development of novel strategies for the treatment of PML.  相似文献   

3.
4.
5.
6.

Background

Viruses interact with and exploit the host cellular machinery for their multiplication and propagation. The MEK/ERK signaling pathway positively regulates replication of many RNA viruses. However, whether and how this signaling pathway affects hepatitis C virus (HCV) replication and production is not well understood.

Methods and Results

In this study, we took advantage of two well-characterized MEK/ERK inhibitors and MEK/ERK dominant negative mutants and investigated the roles of the MEK/ERK signaling pathway in HCV gene expression and replication. We showed that inhibition of MEK/ERK signaling enhanced HCV gene expression, plus- and minus-strand RNA synthesis, and virus production. In addition, we showed that this enhancement was independent of interferon-α (IFN-α) antiviral activity and did not require prior activation of the MEK/ERK signaling pathway. Furthermore, we showed that only MEK and ERK-2 but not ERK-1 was involved in HCV replication, likely through regulation of HCV RNA translation.

Conclusions

Taken together, these results demonstrate a negative regulatory role of the MEK/ERK signaling pathway in HCV replication and suggest a potential risk in targeting this signaling pathway to treat and prevent neoplastic transformation of HCV-infected liver cells.  相似文献   

7.

Introduction

The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)–primed CD1c myeloid dendritic cells (mDCs).

Methods

Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression.

Results

PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation.

Conclusion

SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.  相似文献   

8.

Objective

Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs).

Methods

To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells.

Results

We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane.

Significance

Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.  相似文献   

9.
10.
11.

Background

Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery.

Methods and Findings

All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008).

Conclusions

The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death.

Trial Registration

ClinicalTrials.gov NCT00120367  相似文献   

12.

Objectives

Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored.

Setting

Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital.

Design

Prospective, randomized study using sealed envelopes.

Subjects

36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery.

Interventions

All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h.

Measurements and Main Results

Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters.

Conclusion

SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.  相似文献   

13.
14.

Background

Terminally differentiated (TD) cells permanently exit the mitotic cycle while acquiring specialized characteristics. Although TD cells can be forced to reenter the cell cycle by different means, they cannot be made to stably proliferate, as attempts to induce their replication constantly result in cell death or indefinite growth arrest. There is currently no biological explanation for this failure.

Principal Findings

Here we show that TD mouse myotubes, reactivated by depletion of the p21 and p27 cell cycle inhibitors, are unable to complete DNA replication and sustain heavy DNA damage, which triggers apoptosis or results in mitotic catastrophe. In striking contrast, quiescent, non-TD fibroblasts and myoblasts, reactivated in the same way, fully replicate their DNA, do not suffer DNA damage, and proliferate even in the absence of growth factors. Similar results are obtained when myotubes and fibroblasts are reactivated by forced expression of E1A or cyclin D1 and cdk4.

Conclusions

We conclude that the inability of myotubes to complete DNA replication must be ascribed to peculiar features inherent in their TD state, rather than to the reactivation method. On reviewing the literature concerning reactivation of other TD cell types, we propose that similar mechanisms underlie the general inability of all kinds of TD cells to proliferate in response to otherwise mitogenic stimuli. These results define an unexpected basis for the well known incompetence of mammalian postmitotic cells to proliferate. Furthermore, this trait might contribute to explain the inability of these cells to play a role in tissue repair, unlike their counterparts in extensively regenerating species.  相似文献   

15.

Background

Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2.

Methods

Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution.

Findings

Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators.

Interpretation

Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.  相似文献   

16.
17.
18.
19.

Background

Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood.

Methodology/Principal Findings

In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3β over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression.

Conclusion/Significance

Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway may play a crucial role in airway inflammatory responses.  相似文献   

20.

Background and Aims

Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.

Methods

Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.

Key Results

Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes'' radius of the detected 15-kDa protein.

Conclusions

Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号