首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was for the first time that complementation between the human and simian adenoviruses in human cells as well as the ability of the human adenovirus Ad2 (HADv2) genome to transform completely into the simian adenovirus SA7(C8) (SADv15) capsid (transcapsidation) was demonstrated. A defective adeno-adeno hybrid (recombinant) between the above viruses is described; the recombinant has the SA7(C8) capsid and Ad2 genome with a 10% insertion of SA7(C8) in the central region. Defective hybrid virions are able to replicate both in human and simian cells by using the SA7(C8) virus as helper. The hybrid virions help the above virus to replicate in human cells: they form a mutually complementing virion pair.  相似文献   

2.
Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD.  相似文献   

3.
Human progesterone receptors (PR) are structurally complex. At basal states there are two forms: A-receptors of approximately 94 kDa and B-receptors which are triplets of approximately 114, 117, and 120 kDa. All the proteins bind hormone and are phosphorylated. By using PR-rich T47Dco human breast cancer cells, pulse-labeling with [35S]methionine, and receptor immunopurification with anti-PR monoclonal antibodies, we show that PR are synthesized as single B-proteins of 114 kDa and single A-proteins of 94 kDa. The mature B-triplets form 6-10 h later by post-translational phosphorylation at sites restricted to the B-proteins. This slow maturation is not required for PR activation to hormone binding states, however, since A- and B-receptors that are less than 15 min old respond to progestins by undergoing transformation and nuclear binding accompanied by a rapid secondary phosphorylation common to both proteins. These studies explain the complex structure of the mature human B-receptors and the transformed A- and B-receptors, and address issues dealing with A- and B-proreceptor synthesis and receptor activation rates.  相似文献   

4.
Radioactively labeled vaccinia, cowpox and Shope fibroma virions free from any detectable contamination with host cell protein, were dissociated into their constituent polypeptides, and these were then analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The profiles of constituent polypeptide bands of four strains of vaccinia virus (IHD-W, IHD-J, Lister and DIs) were almost the same, except that a polypeptide of about 41,000 daltons was not detectable in the autoradiogram of strain IHD-W which has no hemagglutinin. The profile of polypeptide bands of cowpox virions was also almost the same as that of vaccinia virions, except for several polypeptides of about 40,000 to 50,000 daltons, but the profile of Shope fibroma virions differed considerably from that of vaccinia or cowpox virions.  相似文献   

5.
The gibbon ape leukemia virus, SEATO strain, and human T-cell leukemia virus type I envelope glycoproteins can be functionally assembled with a Moloney murine leukemia virus core into infectious particles. The envelope-host cell receptor interaction is the major determinant of the host cell specificity for these hybrid virions.  相似文献   

6.
The simian virus 40 (SV40)-yielding variants of the adenovirus type 2 (Ad.2)-SV40 hybrid (Ad.2(++)) population were studied by means of fixed-angle equilibrium density gradient centrifugation in cesium chloride. The hybrid virions of the Ad.2(++) high-efficiency yielder population banded at densities of 0.004 g/cm(3) lighter than the nonhybrid Ad.2 virions. The degree of separation of the hybrid particles was sufficient to permit greater than 100-fold relative purification by two cycles of centrifugation. Hybrid particles that produce adenovirus plaques in African green monkey kidney cells by two-hit kinetics (one-hit kinetics when assayed on lawns of nonhybrid adenovirus) were not separable from the particles that yield SV40 virus. The hybrid particle in the Ad.2(++) low-efficiency yielder population was not separable from the nonhybrid Ad.2 virions.  相似文献   

7.
A virus is a nanoscaled biomolecular substance composed of genes, protecting capsid proteins, and envelopes. The nanoscale dimensions and surface functionalities of virions have been exploited to attract and assemble inorganic and organic materials to produce functional nanomaterials with large surface areas. Genetic modifications of virus capsid proteins lead to the selective deposition and controlled growth of inorganic substances producing organized virus-based hybrid materials. Due to these properties, viruses hold promise for development as platforms for the creation of hybrid materials with multiple functionalities. This article reviews the characteristics of commonly used viruses and their fabrication into virus-based hybrid materials that have been applied in engineering applications such as nanowires and catalysts.  相似文献   

8.
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These DeltaG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.  相似文献   

9.
10.
Three adenovirus type 2-specified immunogens elicited neutralizing antibodies when injected into rabbits; these were the fiber, the hexon, and the penton base. Adenovirus type 2 virions, neutralized by antihexon- or anti-penton base antisera, attached to HeLa cells to the same extent as untreated control virus, and after attachment, neutralized viruses also became sensitive to DNase treatment. A fraction of 75 to 80% of the attached antibody-treated virions penetrated the plasma membrane, which should be compared with an 84 to 88% penetration level in the control series. A majority of the antihexon-neutralized virions was found in intracellular vesicles, as revealed with an electron microscope, but in the case of anti-penton base neutralization, a maximum of 50% of the virions was retained within vesicles, and ca. 30% was free in the cytoplasmic compartment. A value greater than 45% was never obtained for neutralization with a monospecific anti-penton base antiserum, which could imply the existence of alternative pathways for virus penetration into HeLa cells--one of these being sensitive to treatment with anti-penton base antiserum. Antisera containing antifiber specificities efficiently aggregated virions, and the aggregation data mirrored the degree of neutralization. Antifiber-neutralized virions attached to cells to a three- to five times greater extent than untreated control virus, but the former virions had a reduced ability to become sensitive to DNase treatment. Around 15% of the attached antifiber-treated virions was found as large aggregates inside multivesicular bodies or lysosomes.  相似文献   

11.
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response.  相似文献   

12.
The early interactions of LLC-MK2 cell-grown noninfectious Sendai virus and a murine cell line, P815 mastocytoma ascitic cells, were studied by electron microscopy, using the ferritin-conjugated antibody technique with anti-virus glycoprotein serum. For comparison, the interactions of egg-grown infectious Sendai virus with the same cells were also examined. When noninfectious virus was adsorbed to the cells in the cold, the cell membranes become partially invaginated at the site of contact of adsorbed virions, but ferritin-conjugated antibodies did not penetrate into the areas of envelope-cell membrane association. This pattern of virus attachment was similar to that of infectious virus attachment. Upon subsequent incubation at 37 degrees C, most of the adsorbed noninfectious virions were taken into cytoplasmic vesicles and then degraded, although a few virions remained attached to the cell membrane. No evidence of fusion of envelopes of noninfectious virions was obtained. On the other hand, envelopes of infectious virions fused with the cell membrane, and the transferred viral antigens diffused on the cell surfaces and then decreased in number.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) specifically incorporates the host cell peptidyl-prolyl isomerase cyclophilin A into virions via contacts with the capsid (CA) domain of the Gag polyprotein Pr55gag. The immunosuppressant drug cyclosporin A and the nonimmunosuppressive cyclosporin A analog SDZ NIM 811 bind to cyclophilin A and inhibit its incorporation into HIV-1 virions. Both drugs inhibit the virion association of cyclophilin A and the replication of HIV-1 with a similar dose dependence. In contrast, these compounds are inactive against other primate lentiviruses which do not incorporate cyclophilin A, such as simian immunodeficiency virus (SIV). To locate determinants which confer sensitivity to SDZ NIM 811, we generated chimeric proviruses between HIV-1 and SIVmac. A hybrid SIVmac which has the CA-p2 domain of the Gag polyprotein replaced by the corresponding domain from HIV-1 replicated in an established CD4+ cell line and in human but not macaque peripheral blood mononuclear cells. The transfer of the HIV-1 CA-p2 domain to SIVmac led to the efficient incorporation of cyclophilin A, and SDZ NIM 811 effectively inhibited both the virion association of cyclophilin A and the spread of the hybrid virus in infected cultures. We conclude that the HIV-1 CA-p2 domain contains determinants which confer the necessity to interact with cyclophilin A for efficient virus replication. Furthermore, our data show that the CA-p2 domain can play a crucial role in species tropism.  相似文献   

14.
L Powers  P Ryan 《Journal of virology》1994,68(5):2787-2794
We have devised an enrichment scheme for the isolation of export-competent derivatives of pseudorabies virus glycoprotein gIII signal peptide mutants. Enrichment is based upon a growth advantage imparted upon gIII-containing virions compared with virions lacking the glycoprotein. Each of identified derivatives suppressed the gIII signal peptide defect by fusing the gIII gene in frame to the prv43 gene that lay immediately upstream; the result was the synthesis of a Prv43-gIII hybrid protein. The deduced Prv43 protein is predicted to span a membrane multiple times, and it appeared that the gIII portion of each hybrid used a hydrophobic domain of Prv43 protein to initiate its export. For at least two of the isolates, the hybrid protein was efficiently translocated across the endoplasmic reticulum membrane but appeared to be poorly exported out of the endoplasmic reticulum. Nonetheless, the prv43-gIII fusions encoded a gIII species that was localized to the virus envelope. Because the gIII portion of each hybrid protein must be exposed on the virion surface to provide a growth advantage, our results also suggest a preliminary membrane topology for wild-type Prv43 protein.  相似文献   

15.
16.
Harvey F. Lodish  Mary Porter 《Cell》1980,19(1):161-169
The specific incorporation of cell surface proteins into budding Vesicular Stomatitis Virus (VSV) particles was shown by two approaches. In the first, monolayer cultures of Vero or L cells were labeled by lactoperoxidase-catalyzed iodination and the cells were then infected with VSV. Approximately 2% of the cell surface 1251 radioactivity was incorporated into particles which co-purify with normal, infectious virions by both velocity and equilibrium gradient centrifugation and which are precipitated by antiserum specific for the VSV glycoprotein. Control experiments establish that these 125I-labeled particles are not cell debris or cellular material which aggregate with or adhere to VSV virions. VSV virions contain only a subset of the 10–15 normal 1251-labeled cell surface polypeptides resolved by SDS gel electrophoresis; VSV grown in L cells and Vero cells incorporate different host polypeptides. In a second approach, Vero cells were labeled with 35S-methione, then infected with VSV. Two predominant host polypeptides (molecular weights 110,000 and 20,000) were incorporated into VSV virions. These proteins, like VSV G protein, are exposed to the surface of the virion. They co-migrate with the major incorporated 1251 host polypeptides. These host proteins are present in approximately 10 and 80 copies, respectively, per virion. Specific incorporation of host polypeptides into VSV virions does not require the presence of viral glycoprotein. This was shown by use of a ts VSV mutant defective in maturation of VSV G protein to the cell surface. Budding from infected cells are noninfectious particles which contain all the viral proteins except for G; these particles contain the same proportion and spectrum of 1251-labeled host surface polypeptides as do wild-type virions. These results extend previous conclusions implicating the submembrane viral matrix protein, or the viral nucleocapsid, as being of primary importance in selecting cell surface proteins for incorporation into budding VSV virions.  相似文献   

17.
18.
Adsorption of 125I-labeled polyoma virions and capsids to the surface of mouse kidney cells (MKC) and guinea pig erythrocytes was examined. Purified polyoma capsids lack the ability to compete with polyoma virions for specific binding sites on the surface of MKC. These same capsids were, however, able to block virion adsorption to guinea pig erythrocytes. UV-inactivated virions blocked cellular receptors on MKC and thus inhibited infectious virions from infecting the cells. Capsids were unable to inhibit virion infection of MKC. Adsorption of polyoma virions to MKC and infection of these cells were found to be independent of the ability of the virions to agglutinate guinea pig erythrocytes.  相似文献   

19.
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.  相似文献   

20.
Hamster cells are resistant to infection by most retroviruses, including Moloney murine leukemia virus (MoMLV) and gibbon ape leukemia viruses (GaLVs). We have constructed MoMLV-GaLV hybrid virions to identify viral and cellular determinants responsible for the inability of GaLV and MoMLV to infect hamster cells. The substitution of MoMLV core components for GaLV core components circumvents the resistance of hamster cells to infection by GaLV, demonstrating that hamster cells have receptors for GaLV but are not efficiently infected by this primate retrovirus because of a postpenetration block. In contrast, hamster cells are apparently resistant to MoMLV infection because although they bear a receptor for MoMLV, the receptor is nonfunctional. Treatment of CHO K1 or BHK 21 hamster cells with the glycosylation inhibitor tunicamycin allows the cells to be infected by MoMLV. The construction of MoMLV-GaLV hybrid virions that can efficiently infect resistant cells has allowed the identification of viral and cellular factors responsible for restricting infection of hamster cells by MoMLV and GaLV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号