首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Ser-473 is solely phosphorylated in vivo in the tail region of neurofilament L (NF-L). With peptides including the native phosphorylation site, it was not possible to locate responsible kinases. We therefore adopted full-length dephosphorylated NF-L as the substrate, and employed MALDI/TOF (matrix-assisted laser desorption and ionization/time of flight) mass spectrometry and a site-specific phosphorylation-dependent antibody recognizing Ser-473 phosphorylation. The antibody showed that casein kinase I (CK I) as well as casein kinase II (CK II) phosphorylated Ser-473 in vitro, while neither GSK-3beta nor calcium/calmodulin-dependent protein kinase II did so. However, the mass spectra of the tail fragments of the phosphorylated NF-L indicated that CK II was the kinase mediating Ser-473 phosphorylation in vitro as opposed to CK I, because CK I phosphorylated another site as well as Ser-473 in vitro. The antibody also demonstrated that NF-L phosphorylated at Ser-473 was abundant in the neuronal perikarya of the rat cortex, indicating that phosphorylation of Ser-473 may take place there. This result may support the suggestion that CK II is the kinase responsible for Ser-473 phosphorylation. Despite many reports showing that CK I mediates phosphorylation of neurofilaments, CK II may phosphorylate NF-L in vivo.  相似文献   

2.
The cytosolic protein synaphin/complexin critically regulates fast neurotransmitter release at the synapse by binding to SNARE complex. However, the exact mechanism of its action remains unclear, and very little is known about how it is physiologically regulated. Here we show that synaphins (Syps) 1 and 2 can be phosphorylated in vitro by protein kinase CK2 (CK2). The only phosphorylation site by CK2 was serine-115 (Ser-115) of Syps 1 and 2. Syps 1 and 2 exhibited higher affinities to native and recombinant SNARE complexes when phosphorylated at Ser-115. We found Ser-115-phosphorylated Syp 1 (pS115-Syp 1) in the cytosolic fraction of the rat brain using polyclonal antibody specific to pS115-Syps 1 and 2. These results suggest that the activity of Syp is regulated by CK2 phosphorylation of its Ser-115 in vivo. The phosphorylation may provide a new route for modulating fast neurotransmitter release.  相似文献   

3.
The ubiquitin-conjugating enzyme, CDC34, has been implicated in the ubiquitination of a number of vertebrate substrates, including p27(Kip1), IkappaBalpha, Wee1, and MyoD. We show that mammalian CDC34 is a phosphoprotein that is phosphorylated in proliferating cells. By yeast two-hybrid screening, we identified the regulatory (beta) subunit of human casein kinase 2 (CK2) as a CDC34-interacting protein and show that human CDC34 interacts in vivo with CK2beta in transfected cells. CDC34 is specifically phosphorylated in vitro by recombinant CK2 and HeLa nuclear extract at five sites within the carboxyl-terminal 36 amino acids of CDC34. Importantly, this phosphorylation is inhibited by heparin, a substrate-specific inhibitor of CK2. We have also identified a kinase activity associated with CDC34 in proliferating cells, and we show that this kinase is sensitive to heparin and can utilize GTP, strongly suggesting it is CK2. Phosphorylation of CDC34 by the associated kinase maps predominantly to residues 203 and 222. Mutation of CDC34 at CK2-targeted residues, Ser-203, Ser-222, Ser-231, Thr-233, and Ser-236, abolishes the phosphorylation of CDC34 observed in vivo and markedly shifts nuclearly localized CDC34 to the cytoplasm. These results suggest a potential role for CK2-mediated phosphorylation in the regulation of CDC34 cell localization and function.  相似文献   

4.
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.  相似文献   

5.
Mdm2 is a cellular oncoprotein the most obvious function of which is the down-regulation of the growth suppressor protein p53. It represents a highly phosphorylated protein but only little is yet known about the sites phosphorylated in vivo, the kinases that are responsible for the phosphorylation or the functional relevance of the phosphorylation status. Recently, we have shown that mdm2 is a good substrate for protein kinase CK2 at least in vitro. Computer analysis of the primary amino acid sequence of mdm2 revealed 19 putative CK2 phosphorylation sites. By using deletion mutants of mdm2 and a peptide library we identified the serine residue at position 269 which lies within a canonical CK2 consensus sequence (EGQELSDEDDE) as the most important CK2 phosphorylation site. Moreover, by using the mdm2 S269A mutant for in vitro phosphorylation assays this site was shown to be phosphorylated by CK2. Binding studies revealed that phosphorylation of mdm2 at S269 does not have any influence on the binding of p53 to mdm2.  相似文献   

6.
Ribosomal protein S6 (rpS6) is a critical component of the 40 S ribosomal subunit that mediates translation initiation at the 5'-m(7)GpppG cap of mRNA. In response to mitogenic stimuli, rpS6 undergoes ordered C-terminal phosphorylation by p70 S6 kinases and p90 ribosomal S6 kinases on four conserved Ser residues (Ser-235, Ser-236, Ser-240, and Ser-244) whose modification potentiates rpS6 cap binding activity. A fifth site, Ser-247, is also known to be phosphorylated, but its function and regulation are not well characterized. In this study, we employed phospho-specific antibodies to show that Ser-247 is a target of the casein kinase 1 (CK1) family of protein kinases. CK1-dependent phosphorylation of Ser-247 was induced by mitogenic stimuli and required prior phosphorylation of upstream S6 kinase/ribosomal S6 kinase residues. CK1-mediated phosphorylation of Ser-247 also enhanced the phosphorylation of upstream sites, which implies that bidirectional synergy between C-terminal phospho-residues is required to sustain rpS6 phosphorylation. Consistent with this idea, CK1-dependent phosphorylation of rpS6 promotes its association with the mRNA cap-binding complex in vitro. Additionally, we show that protein phosphatase 1 (PP1) antagonizes rpS6 C terminus phosphorylation and cap binding in intact cells. These findings further our understanding of rpS6 phospho-regulation and define a direct link between CK1 and translation initiation.  相似文献   

7.
The HIV-1 Rev transactivator is phosphorylated in vitro by protein kinase CK2 at two residues, Ser-5 and Ser-8; these sites are also phosphorylated in vivo. Here we show that the mechanism by which CK2 phosphorylates Rev is unique in several respects, notably: (i) it is fully dependent on the regulatory, beta-subunit of CK2; (ii) it relies on the integrity of an acidic stretch of CK2 beta which down-regulates the phosphorylation of other substrates; (iii) it is inhibited in a dose-dependent manner by polyamines and other polycationic effectors that normally stimulate CK2 activity. In contrast, a peptide corresponding to the amino-terminal 26 amino acids of Rev, including the phosphoacceptor site, is readily phosphorylated by the catalytic subunit of CK2 even in the absence of the beta-subunit. These data, in conjunction with the observation that two functionally inactive derivatives of Rev with mutations in its helix-loop-helix motif are refractory to phosphorylation, indicate the phosphorylation of Rev by CK2 relies on conformational features of distinct regions that are also required for the transactivator's biological activity.  相似文献   

8.
Minibrain kinase/dual-specificity tyrosine phosphorylation-regulated kinase (Mnb/Dyrk1A) is a proline-directed serine/threonine kinase encoded in the Down syndrome critical region of human chromosome 21. This kinase has been shown to phosphorylate dynamin 1 and synaptojanin 1. Here we report that amphiphysin I (Amph I) is also a Mnb/Dyrk1A substrate. This kinase phosphorylated native Amph I in rodent brains and recombinant human Amph I expressed in Escherichia coli. Serine 293 (Ser-293) was identified as the major site, whereas serine 295 and threonine 310 were found as minor kinase sites. In cultured cells, recombinant Amph I was phosphorylated at Ser-293 by endogenous kinase(s). Because mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) has been suggested to phosphorylate Amph I at Ser-293, our efforts addressed whether Ser-293 is phosphorylated in vivo by MAPK/ERK or by Mnb/Dyrk1A. Overnight serum-withdrawal inactivated MAPK/ERK; nonetheless, Ser-293 was phosphorylated in Chinese hamster ovary and SY5Y cells. Epigallocatechin-3-gallate, a potent Mnb/Dyrk1A inhibitor in vitro, apparently reduced the phosphorylation at Ser-293, whereas PD98059, a potent MAPK/ERK inhibitor, did not. High frequency stimulation of mouse hippocampal slices reduced the phosphorylation at Ser-293, albeit in the midst of MAPK/ERK activation. The endophilin binding in vitro was inhibited by phosphorylating Amph I with Mnb/Dyrk1A. However, phosphorylation at Ser-293 did not appear to alter cellular distribution patterns of the protein. Our results suggest that Mnb/Dyrk1A, not MAPK/ERK, is responsible for in vivo phosphorylation of Amph I at Ser-293 and that phosphorylation changes the recruitment of endophilin at the endocytic sites.  相似文献   

9.
CPI-17 is a protein phosphatase 1 (PP1) inhibitor that has been shown to act on the myosin light chain phosphatase. CPI-17 is phosphorylated on Thr-38 in vivo, thus enhancing its ability to inhibit PP1. Thr-38 has been shown to be the target of several protein kinases in vitro. Originally, the expression of CPI-17 was proposed to be smooth muscle specific. However, it has recently been found in platelets and we show in this report that it is endogenously phosphorylated in brain on Ser-128 in a domain unique to CPI-17. Ser-128 is within a consensus phosphorylation site for protein kinase A (PKA) and calcium calmodulin kinase II. However, these two kinases do not phosphorylate Ser-128 in vitro but phosphorylate Ser-130 and Thr-38, respectively. The kinase responsible for Ser-128 phosphorylation remains to be identified. CPI-17 has strong sequence similarity with PHI-1 (which is also a phosphatase inhibitor) and LimK-2 kinase. The novel in vivo and in vitro phosphorylation sites (serines 128 and 130) are in a region/domain unique to CPI-17, suggesting a specific interaction domain that is regulated by phosphorylation.  相似文献   

10.
Inhibition of v-Mos kinase activity by protein kinase A.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the effect of cyclic AMP-dependent protein kinase (PKA ) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37v-mos in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Combined tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies indicated that Ser-56 is the major in vivo phosphorylation site on v-Mos. In vivo phosphorylation at Ser-56 correlated with slower migration of the v-Mos protein during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, even though Ser-56 was phosphorylated by PKA, this phosphorylation was not involved in the inhibition of v-Mos kinase. The alanine-for-serine substitution at residue 56 did not affect the ability of v-Mos to autophosphorylate in vitro or, more importantly, to activate MEK1 in transformed NIH 3T3 cells. We identified Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. From our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation in mice could be explained at least in part by its inhibition of Mos kinase.  相似文献   

11.
12.
We previously identified the Fas-associated factor FAF1 as an in vitro substrate of protein kinase CK2 and determined Ser289 and Ser291 as phosphorylation sites. Here we demonstrate that these two serine residues are the only sites phosphorylated by CK2 in vitro, and that at least one site is phosphorylated in vivo. Furthermore, we analyzed putative physiological functions of FAF1 phosphorylation. The ability of FAF1 to potentiate Fas-induced apoptosis is not influenced by the FAF1 phosphorylation status; however, the nuclear import of a phosphorylation-deficient FAF1 mutant was delayed in comparison to wild-type FAF1.  相似文献   

13.
The mammalian circadian clock component PERIOD2 (PER2) plays a critical role in circadian rhythm entrainment. Recently, a missense mutation at a putative phosphorylation site in hPER2, Ser-662, was identified in patients that suffer from familial advanced sleep phase syndrome (FASPS). Patients with FASPS display abnormal sleep-wake patterns characterized by a lifelong pattern of sleep onset in the early evening and offset in the early morning. Although the phosphorylation of PER2 is strongly implied from functional studies, it has not been possible to study the site-specific phosphorylation of PER2 on Ser-662, and the biochemical functions of this residue are unclear. Here, we used phospho-specific antibodies to show that PER2 is phosphorylated on Ser-662 and flanking casein kinase (CK) sites in vivo. The phosphorylation of PER2 was carried out by the combined activities of casein kinase 1δ (CK1 δ) and casein kinase 1ε (CK1ε) and was antagonized by protein phosphatase 1. PER2 phosphorylation was rapidly induced in response to circadian entrainment of mammalian cell lines and occurred in both cytosolic and nuclear compartments. Importantly, we found that the pool of Ser-662-phosphorylated PER2 proteins was more stable than the pool of total PER2 molecules, implying that the FASPS phosphorylation cluster antagonizes PER2 degradation. Consistent with this idea, a Ser-662→Ala mutation that abrogated PER2 phosphorylation significantly reduced its half-life, whereas a phosphomimetic Ser-662→Asp substitution led to an elevation in half-life. Our combined findings provide new insights into PER2 regulation and the biochemical basis of FASPS.  相似文献   

14.
Murine double-minute clone 2 protein (MDM2) is an E3 ubiquitin ligase that regulates the turnover of several cellular factors including the p53 tumor suppressor protein. As part of the mechanism of p53 induction in response to DNA damage, a cluster of serine residues within the central acidic domain of MDM2 become hypophosphorylated, leading to attenuation of MDM2-mediated p53 destruction. In the present study, we identify the protein kinase CK1delta as a major cellular activity that phosphorylates MDM2. Amino acid substitution, coupled with phosphopeptide analyses, indicates that several serine residues in the acidic domain, including Ser-240, Ser-242, and Ser-246, as well as Ser-383 in the C-terminal region, are phosphorylated by CK1delta in vitro. We also show, through expression of a dominant negative mutant of CK1delta or treatment of cells with IC261, a CK1delta-selective inhibitor, that MDM2 is phosphorylated by CK1delta in cultured cells. These data establish the identity of a key signaling molecule that promotes the phosphorylation of a major regulatory region in MDM2 under normal growth conditions.  相似文献   

15.
In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters. These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1+R1 and NBD2+R2. We demonstrated that in vitro ABCA1 NBD1+R1, and not NBD2+R2, is phosphorylated by CK2, and we identified Thr-1242, Thr-1243, and Ser-1255 as the phosphorylated residues in the R1 domain by mass spectrometry. We further investigated the functional significance of the threonine and serine phosphorylation sites in NBD1 by site-directed mutagenesis of the entire ABCA1 followed by transfection into Hek-293 Tet-Off cells. The ABCA1 flippase activity, apolipoprotein AI and AII binding, and cellular phospholipid and cholesterol efflux were enhanced by mutations preventing CK2 phosphorylation of the threonine and serine residues. This was confirmed by the effect of specific protein kinase CK2 inhibitors upon the activity of wild type and mutant ABCA1 in transfected Hek-293 Tet-Off cells. The activities of the mutants mimicking threonine phosphorylation were close to that of wild type ABCA1. Our data, therefore, suggest that besides protein kinase A and C, protein kinase CK2 might play an important role in vivo in regulating the function and transport activity of ABCA1 and possibly of other members of the ABCA subfamily.  相似文献   

16.
17.
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.  相似文献   

18.
Ribosomal S6 kinases (S6Ks) are principal players in the regulation of cell growth and energy metabolism. Signaling via phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways mediates the activation of S6K in response to various mitogenic stimuli. The family of S6Ks consists of two forms, S6K1 and -2, that have cytoplasmic and nuclear splicing variants, S6K1 II and S6K1 I, respectively. Nuclear-cytoplasmic shuttling of both isoforms induced by mitogenic stimuli has been reported recently. Here we present the identification of protein kinase CK2 (CK2) as a novel binding and regulatory partner for S6K1 II. The interaction between S6K1 II and CK2beta regulatory subunit was initially identified in a yeast two-hybrid screen and further confirmed by co-immunoprecipitation of transiently expressed and endogenous proteins. The interaction between S6K1 II and CK2 was found to occur in serum-starved and serum-stimulated cells. In addition, we found that S6K1 II is a substrate for CK2. The localization of the CK2 phosphorylation site was narrowed down to Ser-17 in S6K1 II. Mutational analysis and the use of phosphospecific antibody indicate that Ser-17 is a major in vitro and in vivo phosphorylation site for CK2. Functional studies reveal that, in contrast to the wild type kinase, the phosphorylation-mimicking mutant of S6K1 II (S17E) retains its cytoplasmic localization in serum-stimulated cells. Treatment of cells with the nuclear export inhibitor leptomycin B revealed that the S17E mutant accumulates in the nucleus to the same extent as S6K1 II wild type. These results indicate that nuclear import of the S17E mutant is not affected, although the export is significantly enhanced. We also provide evidence that nuclear export of S6K1 is mediated by a CRM1-dependent mechanism. Taken together, this study establishes a functional link between S6K1 II and CK2 signaling, which involves the regulation of S6K1 II nuclear export by CK2-mediated phosphorylation of Ser-17.  相似文献   

19.
The rapamycin-sensitive mammalian target of rapamycin (mTOR) complex 1 (mTORC1) contains mTOR, raptor, mLST8, and PRAS40 (proline-rich Akt substrate of 40 kDa). PRAS40 functions as a negative regulator when bound to mTORC1, and it dissociates from mTORC1 in response to insulin. PRAS40 has been demonstrated to be a substrate of mTORC1, and one phosphorylation site, Ser-183, has been identified. In this study, we used two-dimensional phosphopeptide mapping in conjunction with mutational analysis to show that in addition to Ser-183, mTORC1 also phosphorylates Ser-212 and Ser-221 in PRAS40 when assayed in vitro. Mutation of all three residues to Ala markedly reduces mTORC1-mediated phosphorylation of PRAS40 in vitro. All three sites were confirmed to be phosphorylated in vivo by [(32)P]orthophosphate labeling and peptide mapping. Phosphorylation of Ser-221 and Ser-183 but not Ser-212 is sensitive to rapamycin treatment. Furthermore, we demonstrate that mutation of Ser-221 to Ala reduces the interaction with 14-3-3 to the same extent as mutation of Thr-246, the Akt/protein kinase B-phosphorylated site. We also find that mutation of Ser-221 to Ala increases the inhibitory activity of PRAS40 toward mTORC1. We propose that after mTORC1 kinase activation by upstream regulators, PRAS40 is phosphorylated directly by mTOR, thus contributing to the relief of PRAS40-mediated substrate competition.  相似文献   

20.
Phosphorylation of tau is regulated by PKN   总被引:5,自引:0,他引:5  
For the phosphorylation state of microtubule-associated protein, tau plays a pivotal role in regulating microtubule networks in neurons. Tau promotes the assembly and stabilization of microtubules. The potential for tau to bind to microtubules is down-regulated after local phosphorylation. When we investigated the effects of PKN activation on tau phosphorylation, we found that PKN triggers disruption of the microtubule array both in vitro and in vivo and predominantly phosphorylates tau in microtubule binding domains (MBDs). PKN has a catalytic domain highly homologous to protein kinase C (PKC), a kinase that phosphorylates Ser-313 (= Ser-324, the number used in this study) in MBDs. Thus, we identified the phosphorylation sites of PKN and PKC subtypes (PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -zeta, and -lambda) in MBDs. PKN phosphorylates Ser-258, Ser-320, and Ser-352, although all PKC subtypes phosphorylate Ser-258, Ser-293, Ser-324, and Ser-352. There is a PKN-specific phosphorylation site, Ser-320, in MBDs. HIA3, a novel phosphorylation-dependent antibody recognizing phosphorylated tau at Ser-320, showed immunoreactivity in Chinese hamster ovary cells expressing tau and the active form of PKN, but not in Chinese hamster ovary cells expressing tau and the inactive form of PKN. The immunoreactivity for phosphorylated tau at Ser-320 increased in the presence of a phosphatase inhibitor, FK506 treatment, which means that calcineurin (protein phosphatase 2B) may be involved in dephosphorylating tau at Ser-320 site. We also noted that PKN reduces the phosphorylation recognized by the phosphorylation-dependent antibodies AT8, AT180, and AT270 in vivo. Thus PKN serves as a regulator of microtubules by specific phosphorylation of tau, which leads to disruption of tubulin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号