首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以抗癌胚抗原(Carcinoembryonic antigen, CEA)单链抗体与假单胞菌外毒素(Pseudomonas exotoxin A, PEA)的截短和修饰形式PE38/KDEL构建重组免疫毒素CEA/PE38/KDEL,并在大肠杆菌菌株BL21(DE3)-star中表达。采用镍离子螯合层析法纯化变性的包涵体样品,并用连续梯度透析的方法对纯化后的包涵体进行复性。采用流式细胞术鉴定复性产物与靶细胞的结合活性,结果表明免疫毒素CEA/PE38/KDEL具有与靶细胞特异性结合的活性。以MTT法检测免疫毒素对肿瘤细胞的体外杀伤活性,结果表明该免疫毒素对SW1116和CNE_2细胞具有特异性杀伤活性。证明了经包涵体复性的抗CEA免疫毒素CEA/PE38/KDEL对表达CEA抗原的肿瘤细胞具有良好的结合和杀伤活性。  相似文献   

2.
BACKGROUND: AIDS-associated Kaposi's sarcoma (AIDS-KS) represents one of the most common malignancies associated with human immunodeficiency virus infection. To target effective therapeutic agents to AIDS-KS, we have identified a new target in the form of interleukin-4 receptors (IL-4R). MATERIALS AND METHODS: The expression of IL-4R on AIDS-KS cells and their subunit structure was determined by radioligand receptor binding, cross-linking and Northern and RT-PCR analyses. The in vitro effect of IL-4 and recombinant fusion protein made up of circularly permuted IL-4 and a mutated form of Pseudomonas exotoxin, IL-4(38-37)-PE38KDEL, was examined by clonogenic and protein synthesis inhibition assays. RESULTS: Five AIDS-KS cell lines expressed high-affinity IL-4R with a Kd of 23.5-219 pM. IL-4 appeared to cross-link to one major protein corresponding to 140 kDa and a broad band corresponding to 60-70 kDa. Both cross-linked proteins were immunoprecipitated with an antibody to human IL-4R beta chain. AIDS-KS cells exhibited IL-4R beta-specific mRNA. IL-4 caused a modest inhibition (31-34%) of colony formation in two AIDS-KS cell lines tested. IL-4(38-37)-PE38KDEL was found to be highly effective in inhibiting the protein synthesis in all five AIDS-KS examined. The IC50 ranged from 32 to 1225 pM. The cytotoxic action of IL-4 toxin was blocked by an excess of IL-4, exhibiting the specificity of IL-4(38-37)-PE38KDEL. The cytotoxicity of IL-4 toxin observed by a clonogenic assay corroborated well with the IC50 obtained by protein synthesis inhibition assay. Normal human endothelial cells expressed a negligible number of IL-4R (< 50 sites/cell) and were less sensitive or not sensitive to IL-4(38-37)-PE38KDEL. CONCLUSION: The presence of a new plasma membrane protein in the form of IL-4R on AIDS-KS cells may be targeted by IL-4(38-37)-PE38KDEL for its potential implication in the treatment of AIDS-KS.  相似文献   

3.
4.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin and interleukin-2 therapy. It has been evidenced that VLS-inducing molecules share a three-amino acid consensus motif, (x)D(y), which may be responsible for initiating VLS. Here we have constructed a recombinant immunotoxin (SMFv-PE38KDEL) by genetically fusing PE38KDEL to a single-chain antibody derived from SM5-1 monoclonal antibody, which has a high specificity for melanoma, hepatocellular carcinoma and breast cancer. In order to eliminate VLS induced by this PE38KDEL-based immunotoxin, a panel of mutants were generated by changing amino acid residues adjacent to its three (x)D(y) motifs in the three-dimensional structure. One of the SMFv-PE38KDEL mutants, denoted as mut1, displayed a similar protein synthesis inhibitory in a reticulocyte lysate translation assay compared to the wild-type SMFv-PE38KDEL (wt). The in vitro cytotoxicity assay indicated that mut1 specifically killed SM5-1 binding protein-positive tumor cells, although its cytotoxicity was slightly less than wt. In contrast, mut1 was shown to be much weaker in inducing VLS in mice than wt. The LD50 values of wt and mut1 in mice were investigated with the result that the LD50 of mut1 was about tenfold higher than that of wt. The in vivo antitumor activity of wt and mut1 were also compared in tumor-bearing nude mice. Both wt and mut1 were effective in inhibiting the tumor growth but mut1 showed improved therapeutic efficacy. These studies suggest mut1 may be a novel PE-based immunotoxin with much less toxicity for clinical use. Hao Wang, Shuichuan Song and Geng Kou contributed equally to this paper.  相似文献   

5.
Interleukin-4 receptors (IL-4Rs) are expressed on a wide variety of human cancer cells, and therefore it may be a good option to treat IL-4R-bearing tumors with IL-4-fusing immunotoxins. In this study, the gene encoding human interleukin-4 mutein cpIL-4(13D) was obtained through overlapping polymerase chain reaction. A chimeric immunotoxin was constructed by genetically fusing the mutein cpIL-4(13D) to a modified version of Pseudomonas exotoxin A (PE38KDEL) and was expressed in Escherichia coli AD494 (DE3). The expression level of the fusion protein was about 30% of the total bacterial protein assessed by SDS-PAGE analysis. After purification by affinity chromatography and anion exchange chromatography, the chimeric protein was tested for its cytotoxicity. Our data show that cpIL-4(13D)-PE38KDEL has improved cytotoxicity on IL-4R-bearing tumor cells in comparison with other IL-4-fusing immunotoxins and might be useful in treating tumors with a large number of IL-4Rs.  相似文献   

6.
LRP 1 B functions as a receptor for Pseudomonas exotoxin   总被引:1,自引:0,他引:1  
Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors, among them Pseudomonas Exotoxin A (PE). Previously, low-density lipoprotein receptor-related protein 1 (LRP 1) was shown to be the primary receptor for PE. In this report, we show that a close family member, LRP 1B, can also function as a receptor.  相似文献   

7.
Pseudomonas exotoxin (PE) is a 66,000 molecular weight protein secreted by Pseudomonas aeruginosa. PE is made up of three domains, and PE40 is a form of PE which lacks domain Ia (amino acids 1-252) and has very low cytotoxicity because it cannot bind to target cells. The sequence Arg-Glu-Asp-Leu-Lys (REDLK) at the carboxyl terminus of Pseudomonas exotoxin has been shown to be important for its cytotoxic activity (Chaudhary, V. K., Jinno, Y., FitzGerald, D. J., and Pastan, I. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 308-312). In this study, we tested the effect of altering the carboxyl sequence of PE from REDLK to the characteristic endoplasmic reticulum retention sequence, KDEL, or to KDEL repeated three times (KDEL)3. We also made similar changes at the carboxyl terminus of two chimeric toxins in which domain I of PE (amino acids 1-252) was either replaced with transforming growth factor alpha (TGF alpha) to make TGF alpha-PE40 or with a single chain antibody (anti-Tac) reacting with the human interleukin 2 receptor to make anti-Tac(Fv)-PE40. Statistical analyses of our results demonstrate that PE and its derivatives ending in KDEL or (KDEL)3 are significantly more active than PE or derivatives ending in REDLK. We have also found that brefeldin A, which is known to perturb the endoplasmic reticulum, inhibits the cytotoxic action of PE. Our results suggest that the altered carboxyl terminus may enable the toxin to interact more efficiently with a cellular component involved in translocation of the toxin to the cytosol.  相似文献   

8.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin therapy. In our previous study, a modified PE38KDEL, denoted PE38KDELKQK, was engineered to eliminate VLS. The PE38KDELKQK-based immunotoxin has been proved to retain potent anti-tumor activity but with a remarkable attenuation in VLS. In the present study, we have constructed and expressed a recombinant immunotoxin CD25-PE38KDELKQK containing humanized anti-CD25 single-chain antibody (scFv) genetically fused to PE38KDELKQK in Escherichia coli. After washing with buffer containing 2 M urea, the purity of inclusion body was about 82%. The denatured inclusion bodies were refolded on-column in Tris buffer (pH 8.0) containing 4mM of GSH and 1 mM of GSSG using a gradient of decreasing urea. We found that the presence of GSH/GSSG (4:1) in the on-column refolding buffer was important for efficient refolding. In addition, slow flow rate was another important factor could increase refolding. Under these conditions, the activity of the refolded protein could reach about 90% of that of the native protein. The refolded proteins were purified to homogeneity ( approximately 95% purity) by a combination of His-Ni(2+) metal affinity chromatography and gel filtration chromatography. The in vitro cytotoxicity assay indicated the purified immunotoxin CD25-PE38KDELKQK had specific cytotoxicity to CD25-positive leukemic cells comparable to wild-type CD25-PE38KDEL (wt). In contrast, CD25-PE38KDELKQK was shown to be much weaker in inducing VLS in mice than wt. The protein expression, purification, and refolding system established in this paper is important for further study on immunotoxin CD25-PE38KDELKQK.  相似文献   

9.
The alpha(2-)macroglobulin receptor (alpha(2)MR) has been reported to mediate the internalization of the urokinase plasminogen activator receptor (uPAR) via ligand binding to both receptors. To target malignant uPAR-expressing cells and to determine whether uPAR can internalize without ligand binding to alpha(2)MR, we engineered two recombinant toxins, ATF-PE38 and ATF-PE38KDEL. Each consists of the amino-terminal fragment (ATF) of human urokinase and a truncated form of Pseudomonas exotoxin (PE) devoid of domain Ia, which binds alpha(2)MR. ATF-PE38 and ATF-PE38KDEL were cytotoxic toward malignant uPAR-bearing cells, with IC(50) values as low as 0.02 ng/ml (0.3 pM). Cytotoxicity could be blocked using either recombinant urokinase or free ATF, indicating that the cytotoxicity of the recombinant toxins was specific. Radiolabeled ATF-PE38 had high affinity for uPAR (K(d) = 0.4-8 nM) on a variety of different malignant cell types and internalized at a rate similar to that of ATF. The cytotoxicity was not diminished by receptor-associated protein, which binds and shields the alpha(2)MR from other proteins, or by incubation with phorbol myristate acetate, which is known to decrease the number of alpha(2)MRs in U937 cells or by antibodies to alpha(2)MR. Therefore, these recombinant toxins appear to internalize via uPAR without association with the alpha(2)MR.  相似文献   

10.
The cytotoxicity of combinations of a diphtheria toxin-human epidermal growth factor fusion protein (DAB(389)EGF) and a Pseudomonas exotoxin-human interleukin 13 fusion protein (IL13PE38QQR) was tested against 14 human glioma cell lines. After cells were cultured for 48 h with various concentrations of the fusion proteins, the percentage reductions in thymidine incorporation were determined. Seven of fourteen cell lines were highly sensitive to DAB(389)EGF alone, and six cell lines were highly sensitive to IL13PE38QQR alone with IC(90)'s < 100 pM. When combined, synergistic cell killing was observed for seven of the cell lines based upon concave isobolograms and combination indices (CI's) of 0.2 to 0.7. Supraadditive cytotoxicity was confirmed by measurements of induction of apoptosis. Receptor expression was assessed by flow cytometry and confocal microscopy. Marked heterogeneity of expression of EGFR and IL13Ralpha2 was seen on all the glioma cell lines. This heterogeneity may contribute to incomplete cell killing with the individual fusion proteins and synergistic cell kill with the combination. These results suggest that both fusion proteins may yield antitumor effects in patients with recurrent gliomas and that combination fusion protein intracranial therapy of malignant gliomas may yield an improved therapeutic index.  相似文献   

11.
为了研究免疫毒素发挥生物学作用的全过程,构建了两种不同形式的基于假单胞菌外毒素(Pseudomonas exotoxin A,PE)的抗癌胚抗原(carcinoembryonic antigen, CEA)免疫毒素CEA(Fv)/PE38/KDEL和PE35/CEA(Fv)/KDEL.用流式细胞术经间接免疫荧光法测定免疫毒素的抗原结合活性.免疫毒素的内化(internalization)通过间接免疫荧光标记的方法在激光共聚焦显微镜下进行检测,采用流式细胞术进行免疫毒素内化的定量分析.细胞凋亡采用FITC-annexin V/PI双荧光染色方法进行分析.用噻唑蓝(MTT)法测定免疫毒素的靶细胞杀伤功能.对两种形式的免疫毒素在各个功能阶段的性质进行研究和比较,全面展现了免疫毒素发挥生物学功能的过程及各个生物作用过程之间的相互影响,为详尽的机制研究和免疫毒素的进一步优化改造提供了重要的依据.  相似文献   

12.
Many proteins produced in Escherichia coli accumulate in inclusion bodies. We have systematically evaluated the parameters that affect the refolding and renaturation of enzymatically active molecules from bacterial inclusion bodies containing a recombinant single-chain immunotoxin, B3(Fv)-PE38KDEL. This recombinant molecule is composed of the variable domains of monoclonal antibody B3 (B3(Fv)) fused to a truncated mutant form of Pseudomonas exotoxin A (PE38KDEL). This immunotoxin kills carcinoma cells in vitro, causes tumor regression in animal tumor models, and is being developed as an anti-cancer therapeutic agent (Brinkmann et al., 1991, Proc. Natl. Acad. Sci. USA 88, 8616-8620). Like many other recombinant proteins, B3(Fv)-PE38KDEL is produced in E. coli in inclusion bodies and must be denatured and refolded to become active. This requires correct folding, formation of native disulfide bonds, and the association of different domains. All these steps are strongly dependent on the renaturation conditions used. Optimum conditions of refolding were obtained by the addition of reduced and oxidized thiol reagents to promote disulfide bond formation and the addition of a labilizing agent such as L-arginine. Furthermore, the necessity to reactivate proteins at low protein concentrations due to its tendency to aggregate at high concentrations was overcome by a step-by-step addition of denatured and reduced protein into the refolding solution. This approach should be useful for the production of active forms of other recombinant proteins.  相似文献   

13.
以含单链抗体 ( Sc Fv) 3H1 1基因全长的质粒 DNA为模板 ,利用 PCR技术扩增 3H1 1 Sc Fv基因片段 ,扩增片段及绿脓杆菌外毒素 PE38表达质粒 p YR39- 1 - PE38经 H ind /N de 酶切、连接 ,转化大肠杆菌 BL2 1,构建免疫毒素的表达质粒 p YR3H1 1 - PE38.转化菌在 IPTG诱导下 ,表达免疫毒素 3H1 1 - PE38,3H1 1 - PE38经纯化、变性、复性处理后 ,通过 MTT法检测其对胃癌细胞MGC80 3的杀伤活性 .结果表明 ,3H1 1 - PE38浓度不变 ,其杀伤率在一定的范围内随作用时间的延长而增加 ,当浓度为 5× 1 0 -8mol/L,作用时间为 60 h时 ,其对胃癌 MGC80 3细胞的杀伤率达74 .2 % ,而同等条件下抗 DNA免疫毒素 p Ig2 0 - PE38的杀伤率仅为 9.2 % ;作用时间一定 ( 60 h) ,免疫毒素浓度与杀伤率呈正相关 ,在 1 0 -10 mol/L以下 ,杀伤率几乎为零 ,而浓度高于 5× 1 0 -8mol/L时 ,杀伤率超过 70 % . 3H1 1 - PE38能够有效杀伤与之特异结合的胃癌细胞 ,具有潜在的应用前景  相似文献   

14.
Pseudomonas exotoxin (PE) contains three domains whose functions are cell recognition, membrane translocation, and ADP ribosylation of elongation factor 2. PE40 is a form of PE which is missing the cell recognition domain. To study the properties of PE40, it was expressed in Escherichia coli using a vector which contains a T7 phage promoter, an OmpA signal sequence, and that portion of the PE gene encoding PE40. Upon induction with isopropyl-1-thio-beta-D-galactopyranoside, large amounts of PE40 were secreted, and highly purified PE40 was prepared from the culture medium. PE40 was chemically coupled to different monoclonal antibodies, and protein synthesis inhibition activities of these immunotoxins was assessed on various cell lines. These activities were compared with the activities of the corresponding immunotoxins made with native PE. These data indicate that PE40 may be useful in the construction of certain immunotoxins.  相似文献   

15.
Recombinant immunotoxin for the treatment of cancer was made by connecting toxins to 'carcinoma-specific' antibodies that selectively bind to cancer cells, then kills them without harming the normal cells. The divalent recombinant immunotoxin, [B3(Fab)-ext-PE38]2, is a derivative of B3(Fab)-PE38. B3(Fab)-PE38 was made by fusing the Fab domain of the monoclonal antibody (MAb) B3 to PE38, a truncated mutant form of Pseudomonas exotoxin (PE). In this study, B3(Fab)-ext-PE38 was constructed, which has the hinge region of the B3(Fab)-PE38 extended with the peptide extension, G4C(G4S)2, and connected to the C3 connector. The Cys residue of the extension peptide chain makes the disulfide bond between the two Fab domains. The extension sequence (ext) makes the dimerization of B3(Fab)-ext-PE38 easier to form the divalent immunotoxin, because it decreases the steric hindrance between the two PE38s. The constructed genes were expressed in E. coli as inclusion bodies. Polypeptides that were obtained from the inclusion body were refolded, and the active forms were purified. The ID50 values of the divalent molecule, [B3(Fab)-ext-PE38]2, were about 4 ng/ml on A431 cell lines, about 1 ng/ml on CRL1739 cell lines, and 5 ng/ml on MCF-7 cell lines. The [B3(Fab)-ext-PE38]2 showed about a 12-fold higher cytotoxicity on CRL1739 cell lines than B3(scFv)-PE40 did.  相似文献   

16.
Pseudomonas exotoxin A (PE) is a cytotoxin composed of three structural domains. Domain I is responsible for cell binding, domain II for membrane translocation enabling access to the cytosol, and domain III for the catalytic inactivation of protein synthesis, which results in cell death. To investigate the role of the six alpha-helices (A-F) that form the translocation domain, we deleted them successively one at a time. All mutants showed native cell-binding and catalytic activities, indicating that deletions specifically affected translocation activity. This step of the intoxication procedure was examined directly using a cell-free translocation assay, and indirectly by monitoring cytotoxicity. Translocation activity and log(cytotoxicity) were highly correlated, directly indicating that translocation is rate limiting for PE intoxication. Deletion of B, C and D helices resulted in non-toxic and non-translocating molecules, whereas mutants lacking the A or E helix displayed significant cytotoxicity albeit 500-fold lower than native PE. We concluded that B, C and D helices, which make up the core of domain II, are essential, whereas the more peripheral A and E helices are comparatively dispensable. The last helix (F) is inhibitory for translocation because its deletion produced a mutant displaying a translocation activity 60% higher than PE, along with a three- to sixfold increase in cytotoxicity in all tested cell lines. This toxin is the most in vitro active PE mutant obtained until now. Finally, partial duplication of domain II did not give rise to a more actively translocated PE, but rather to a threefold less active molecule.  相似文献   

17.
We have developed a bioluminescence‐based non‐destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)‐targeted copepod luciferase (GLuc‐KDEL), respectively, by using multi‐integrase mouse artificial chromosome (MI‐MAC) vector. We have demonstrated that the time‐dependent concentration response curves of ELuc luminescence intensity and WST‐1 assay, and GLuc‐KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant‐treated ELuc‐ and GLuc‐KDEL‐expressing HepG2 stable cell lines. We have clarified that the increase of GLuc‐KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc‐KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage‐associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc‐KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc‐KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules.  相似文献   

18.
Mik-beta 1 is a mAb that binds to the beta subunit of the IL-2R. We have constructed a recombinant single chain immunotoxin Mik-beta 1(Fv)-PE40 by genetically fusing the H and L V domains of Mik-beta 1 to each other via a peptide linker, and then to PE40, a derivative of Pseudomonas exotoxin. Mik-beta 1(Fv)-PE40 was selectively cytotoxic for cells expressing high levels of IL-2R beta (p75) subunit. Mik-beta 1(Fv)-PE40 was cytotoxic to the NK cell line YT-S, which expresses p75 but not p55 subunits, with an IC50 of 6 ng/ml. The ATL line HUT-102 was less sensitive, with an IC50 of 200 ng/ml. However, the IC50 could be lowered to 11 ng/ml when Mik-beta 1(Fv)-PE40 was allowed to bind to HUT-102 cells at 4 degrees C for 4 h before overnight incubation at 37 degrees C. An excess of Mik-beta 1 but not of anti-Tac, the anti-p55 mAb, prevented the cytotoxicity of Mik-beta 1(Fv)-PE40. We constructed a more active version of Mik-beta 1(Fv)-PE40, designated Mik-beta 1(Fv)-PE40KDEL, by converting the carboxyl-terminus of the toxin from -REDLK to -KDEL. Mik-beta 1(Fv)-PE40KDEL showed an IC50 of 2 ng/ml toward YT-S cells and 35 ng/ml toward HUT-102 cells. Binding studies using radioiodinated Mik-beta 1 showed that Mik-beta 1(Fv)-PE40 bound to the p75 receptor subunit with 11% of the affinity of the native Mik-beta 1 antibody. Mik-beta 1(Fv)-PE40 may be a useful reagent to study cells that express IL-2R, and it deserves further study as a possible treatment for cancers in which the malignant cells express high numbers of p75 subunit.  相似文献   

19.
IL6-PE40 is a chimeric toxin composed of human interleukin-6 (IL6) linked by a peptide bond to PE40, a form of Pseudomonas exotoxin (PE) devoid of its cell recognition domain. To identify cancer cell lines with high numbers of IL6 receptors and to assess the usefulness of IL6-PE40 as a possible anticancer agent, we evaluated the toxicity of IL6-PE40 on a variety of tumor cell lines and demonstrated that certain human myeloma and hepatoma cell lines were particularly sensitive. IL6 binding to selected hepatoma and myeloma cell lines were determined by using [125I]IL6. IL6 receptor mRNA levels were measured by polymerase chain reactions. When comparisons were made among different hepatoma cell lines, the sensitivity to IL6-PE40 correlated with the number of IL6 receptors. However, the hepatoma line PLC/PRF/5, which contains 2,300 IL6 receptors, was more sensitive to IL6-PE40 (amount of protein required to inhibit protein synthesis by 50% was 5 ng/ml) than both the myeloma cell lines U266 and H929 (for both cell lines, the 50% inhibitory dose was 8 ng/ml), which contain 15,500 and 16,500 IL6 receptors, respectively. RNA analysis confirmed that the sensitivity of these cells to IL6-PE40 and the amount of IL6 receptor RNA detected did not correlate. These data suggest that factors in addition to the number of IL6-binding sites contribute to the sensitivity of cells to IL6-PE40.  相似文献   

20.
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号