首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trimeric fusion (F) glycoproteins of morbilliviruses are activated by furin cleavage of the precursor F(0) into the F(1) and F(2) subunits. Here we show that an additional membrane-proximal cleavage occurs and modulates F protein function. We initially observed that the ectodomain of approximately one in three measles virus (MV) F proteins is cleaved proximal to the membrane. Processing occurs after cleavage activation of the precursor F(0) into the F(1) and F(2) subunits, producing F(1a) and F(1b) fragments that are incorporated in viral particles. We also detected the F(1b) fragment, including the transmembrane domain and cytoplasmic tail, in cells expressing the canine distemper virus (CDV) or mumps virus F protein. Six membrane-proximal amino acids are necessary for efficient CDV F(1a/b) cleavage. These six amino acids can be exchanged with the corresponding MV F protein residues of different sequence without compromising function. Thus, structural elements of different sequence are functionally exchangeable. Finally, we showed that the alteration of a block of membrane-proximal amino acids results in diminished fusion activity in the context of a recombinant CDV. We envisage that selective loss of the membrane anchor in the external subunits of circularly arranged F protein trimers may disengage them from pulling the membrane centrifugally, thereby facilitating fusion pore formation.  相似文献   

2.
Group II nucleopolyhedroviruses (NPVs), e.g., Spodoptera exigua MNPV, lack a GP64-like protein that is present in group I NPVs but have an unrelated envelope fusion protein named F. In contrast to GP64, the F protein has to be activated by a posttranslational cleavage mechanism to become fusogenic. In several vertebrate viral fusion proteins, the cleavage activation generates a new N terminus which forms the so-called fusion peptide. This fusion peptide inserts in the cellular membrane, thereby facilitating apposition of the viral and cellular membrane upon sequential conformational changes of the fusion protein. A similar peptide has been identified in NPV F proteins at the N terminus of the large membrane-anchored subunit F(1). The role of individual amino acids in this putative fusion peptide on viral infectivity and propagation was studied by mutagenesis. Mutant F proteins with single amino acid changes as well as an F protein with a deleted putative fusion peptide were introduced in gp64-null Autographa californica MNPV budded viruses (BVs). None of the mutations analyzed had an major effect on the processing and incorporation of F proteins in the envelope of BVs. Only two mutants, one with a substitution for a hydrophobic residue (F152R) and one with a deleted putative fusion peptide, were completely unable to rescue the gp64-null mutant. Several nonconservative substitutions for other hydrophobic residues and the conserved lysine residue had only an effect on viral infectivity. In contrast to what was expected from vertebrate virus fusion peptides, alanine substitutions for glycines did not show any effect.  相似文献   

3.
Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.  相似文献   

4.
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.  相似文献   

5.
The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5.  相似文献   

6.
The relationship between the length of the connecting peptide in a paramyxovirus F0 protein and cleavage of F0 into the F1 and F2 subunits has been examined by constructing a series of mutant F proteins via site-directed mutagenesis of a cDNA clone encoding the simian virus 5 F protein. The mutant F proteins had one to five arginine residues deleted from the connecting peptide. The minimum number of arginine residues required for cleavage-activation of the simian virus 5 F0 protein by host cell proteases was found to be four. F proteins with two or three arginine residues in the connecting peptide were not cleaved by host cell proteases but could be cleaved by exogenously added trypsin. The mutant F protein possessing a connecting peptide consisting of one arginine residue was not cleaved by trypsin. The altered F proteins were all transported to the infected-cell plasma membrane as shown by cell surface immunofluorescence or cell surface trypsinization. However, the only mutant F protein found to be biologically active as detected by syncytium formation was the F protein which has four arginine residues at the cleavage site. The results presented here suggest that in the paramyxovirus F protein the number of basic amino acid residues in the connecting peptide is important for cleavage of the precursor protein by host cell proteases but is not the only structural feature involved. In addition, the data indicate that cleavage of F0 into F1 and F2 does not necessarily result in biological activity and that the connecting peptide may affect the local conformation of the F polypeptide.  相似文献   

7.
cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge.  相似文献   

8.
Rubella virus cDNA. Sequence and expression of E1 envelope protein   总被引:6,自引:0,他引:6  
A cDNA clone encoding the entire E1 envelope protein (410 amino acid residues) and a portion of the C-terminal end of the E2 envelope protein of the rubella virus has been isolated and characterized. DNA sequence analysis has revealed a region 20 nucleotides in length at the 3' end of the cloned cDNA which may be a replicase recognition site or a recognition site for encapsidation. The proteolytic cleavage site between the E1 and E2 proteins was localized based on the known amino-terminal sequence of the isolated E1 protein (Kalkkinen, N., Oker-Blom, C., and Pettersson, R. F. (1984) J. Gen. Virol. 65, 1549-1557) and the deduced amino acid sequence. The mature E1 protein is preceded by a set of 20 highly hydrophobic amino acid residues possessing characteristics of a signal peptide. This "signal peptide" is flanked on both sides by typical protease cleavage sites for trypsin-like enzyme and signal peptidase. The presence of a leader sequence in the E1 protein precursor may facilitate its translocation through the host cell membrane. The E1 protein of rubella virus shows no significant homology with alphavirus E1 envelope proteins. However, a stretch of 39 amino acids in the E1 protein of rubella virus (residues 262-300) was found to share a significant homology with the first 39 residues of bovine sperm histone. The position of 4 half-cystines and 8 arginines overlaps. The E1 protein of rubella virus has been successfully expressed in COS cells after transfecting them with rubella virus cDNA in simian virus 40-derived expression vector. This protein is antigenically similar to the one expressed by cells infected with rubella virus.  相似文献   

9.
R G Paterson  R A Lamb 《Cell》1987,48(3):441-452
The hydrophobic NH2 terminus of F1 (FRED) of the simian virus 5 fusion (F) protein is implicated in mediating cell fusion, but in the inactive F0 precursor the FRED is translocated across membranes. Hybrid proteins containing the FRED as a potential membrane anchorage domain and a mutant of F0 lacking the preceding five-arginine cleavage/activation site were used to study the effect of position on the FRED. The experiments indicate that the SV5 F protein has evolved an exquisite control system for biological activity: the FRED is close to the threshold of hydrophobicity required to function as a membrane anchor. The FRED is not sufficiently hydrophobic to halt translocation when in an internal position, but on cleavage/activation the threshold of hydrophobicity is effectively lowered, and the FRED, now the NH2 terminus of F1, is able to interact stably with membranes.  相似文献   

10.
The nucleotide sequence of tobacco vein mottling virus RNA.   总被引:24,自引:5,他引:19       下载免费PDF全文
The nucleotide sequence of the RNA of tobacco vein mottling virus, a member of the potyvirus group, was determined. The RNA was found to be 9471 residues in length, excluding a 3'-terminal poly(A) tail. The first three AUG codons from the 5'-terminus were followed by in-frame termination codons. The fourth, at position 206, was the beginning of an open reading frame of 9015 residues which could encode a polyprotein of 340 kDa. No other long open reading frames were present in the sequence or its complement. This AUG was present in the sequence AGGCCAUG, which is similar to the consensus initiation sequence shared by most eukaryotic mRNAs. The chemically-determined amino acid compositions of the helper component and coat proteins were similar to those predicted from the nucleotide sequence. Amino acid sequencing of coat protein from which an amino-terminal peptide had been removed allowed exact location of the coat protein cistron. A consensus sequence of V-(R or K)-F-Q was found on the N-terminal sides of proposed cleavage sites for proteolytic processing of the polyprotein.  相似文献   

11.
The hepatitis C virus (HCV) genome contains an internal ribosome entry site (IRES) followed by a large open reading frame coding for a polyprotein that is cleaved into 10 proteins. An additional HCV protein, the F protein, was recently suggested to result from a +1 frameshift by a minority of ribosomes that initiated translation at the HCV AUG initiator codon of the polyprotein. In the present study, we reassessed the mechanism accounting for the synthesis of the F protein by measuring the expression in cultured cells of a luciferase reporter gene with an insertion encompassing the IRES plus the beginning of the HCV-coding region preceding the luciferase-coding sequence. The insertion was such that luciferase expression was either in the +1 reading frame relative to the HCV AUG initiator codon, mimicking the expression of the F protein, or in-frame with this AUG, mimicking the expression of the polyprotein. Introduction of a stop codon at various positions in-frame with the AUG initiator codon and substitution of this AUG with UAC inhibited luciferase expression in the 0 reading frame but not in the +1 reading frame, ruling out that the synthesis of the F protein results from a +1 frameshift. Introduction of a stop codon at various positions in the +1 reading frame identified the codon overlapping codon 26 of the polyprotein in the +1 reading frame as the translation start site for the F protein. This codon 26(+1) is either GUG or GCG in the viral variants. Expression of the F protein strongly increased when codon 26(+1) was replaced with AUG, or when its context was mutated into an optimal Kozak context, but was severely decreased in the presence of low concentrations of edeine. These observations are consistent with a Met-tRNAi-dependent initiation of translation at a non-AUG codon for the synthesis of the F protein.  相似文献   

12.
The human lysosomal enzyme beta-hexosaminidase (EC 3.2.1.52) is a glycoprotein composed of dimers of alpha- and/or beta-subunits. The subunits of the enzymes are synthesized in the rough endoplasmic reticulum and transported through the Golgi apparatus to the lysosome. As such, each subunit contains an amino-terminal signal peptide that directs the nascent polypeptide into the lumen of the endoplasmic reticulum. The signal peptide cleavage site of the beta-polypeptide is known, but its NH2 terminus has not been determined due to the presence of three candidate initiation codons upstream of the cleavage site. In this study, we identified the mRNA cap site, confirming the presence of all three AUGs in the majority of HEXB mRNA. To identify the site of translation initiation, we mutated the three ATGs by deletion and site-directed mutagenesis and showed that all three AUG codons can be used for translation initiation after expression in COS cells. Furthermore, in each case, a fully processed, i.e. mature lysosomal, and enzymatically active beta-hexosaminidase was produced indicating that a functional signal peptide was synthesized. However, expression of a frameshift mutation in the normal construct, created by insertion of a single nucleotide between the first and second ATG, resulted in no significant enzyme activity or beta-subunit protein. We conclude, therefore, that the first in-frame ATG is used exclusively in vivo, in keeping with the scanning model of eukaryotic translation initiation. Interestingly, substitution of all three ATGs with CTG resulted in a significant amount of mature beta-hexosaminidase, showing that under these conditions, initiation could occur from non-AUG codons. Translation initiation from the first AUG gives the prepro-beta-polypeptide a signal peptide of 42 amino acids that has an unusually long hydrophobic core more typical of membrane spanning domains. Such a large hydrophobic core has not been found in other cleavable signal peptides.  相似文献   

13.
14.
The amino acid sequence of respiratory syncytial virus fusion protein (Fo) was deduced from the sequence of a partial cDNA clone of mRNA and from the 5' mRNA sequence obtained by primer extension and dideoxysequencing. The encoded protein of 574 amino acids is extremely hydrophobic and has a molecular weight of 63371 daltons. The site of proteolytic cleavage within this protein was accurately mapped by determining a partial amino acid sequence of the N-terminus of the larger subunit (F1) purified by radioimmunoprecipitation using monoclonal antibodies. Alignment of the N-terminus of the F1 subunit within the deduced amino acid sequence of Fo permitted us to identify a sequence of lys-lys-arg-lys-arg-arg at the C-terminus of the smaller N-terminal F2 subunit that appears to represent the cleavage/activation domain. Five potential sites of glycosylation, four within the F2 subunit, were also identified. Three extremely hydrophobic domains are present in the protein; a) the N-terminal signal sequence, b) the N-terminus of the F1 subunit that is analogous to the N-terminus of the paramyxovirus F1 subunit and the HA2 subunit of influenza virus hemagglutinin, and c) the putative membrane anchorage domain near the C-terminus of F1.  相似文献   

15.
The long terminal repeat (LTR) region of mouse mammary tumor virus (MMTV) is known to contain an open reading frame of sufficient length to code for a protein of 36,000 Mr. The coding capacity of the 3' sequences of MMTV genomic RNA has been demonstrated by in vitro translation studies, which have reported the synthesis of four related proteins: p36, p24, p21, and p18. These proteins are overlapping translation products of the same open reading frame, with the smaller ones initiating at internal methionine codons. From the predicted amino acid sequence of the LTR protein, we have selected a region likely to be antigenic, obtained a synthetic peptide of that region, and raised antiserum to the peptide. The antipeptide serum specifically immunoprecipitated all four proteins from in vitro translated genomic 3' MMTV RNA, plus an additional one of 32,000 Mr. Published sequence data of MMRV LTRs show an internal AUG codon at a position which could initiate a protein of 32,000 Mr. The three smaller in vitro translation products (p24, p21, and p18) were consistently synthesized in much greater amounts than the p36 or p32 protein. The relative amount of each in vitro synthesized protein from genomic MMTV RNA could be predicted and was in good agreement with the postulated effect of flanking nucleotides on the efficiency of the respective AUG initiation codon. Polyadenylated RNAs, isolated from various mouse tissues, were selected by hybridization to plasmid DNA containing MMTV LTR sequences immobilized on nitrocellulose. In vitro translation of hybrid-selected mRNAs isolated from BALB/c mouse lactating mammary glands and carcinogen-induced mammary tumors, followed by immunoprecipitation with antipeptide serum, revealed that only one polypeptide was synthesized by the MMTV LTR-specific mRNA, the 36,000 Mr species.  相似文献   

16.
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.  相似文献   

17.
Measles virus P gene codes for two proteins.   总被引:39,自引:27,他引:12       下载免费PDF全文
The entirety of the phosphoprotein gene of measles virus has been sequenced. The gene is composed of 1,657 nucleotides and specifies a 507-amino-acid protein (P). A second overlapping reading frame was predicted from the sequence and specifies a 186-amino-acid protein (C). Through the use of antisynthetic peptide antibodies, we show that both proteins are expressed in virally infected cells. Both proteins are expressed from a functionally bicistronic mRNA through independent initiation of ribosomes at the respective AUG codons. Using immunofluorescent microscopy, we localized the C protein in the nucleus and in cytoplasmic inclusions within the infected cells.  相似文献   

18.
Several cellular proteins are synthesized in the cytosol on free ribosomes and then associate with membranes due to the presence of short peptide sequences. These membrane-targeting sequences contain sites to which lipid chains are attached, which help direct the protein to a particular membrane domain and anchor it firmly in the bilayer. The intracellular concentration of these proteins in particular cellular compartments, where their interacting partners are also concentrated, is essential to their function. This paper reports that the apparently unmodified N-terminal sequence of the Sendai virus C protein (MPSFLKKILKLRGRR . . .; letters in italics represent hydrophobic residues; underlined letters represent basic residues, which has a strong propensity to form an amphipathic alpha-helix in a hydrophobic environment) also function as a membrane targeting signal and membrane anchor. Moreover, the intracellular localization of the C protein at the plasma membrane is essential for inducing the interferon-independent phosphorylation of Stat1 as part of the viral program to prevent the cellular antiviral response.  相似文献   

19.
Serological relationships among measles virus (MV), canine distemper virus (CDV), and rinderpest virus (RV), which constitute morbillivirus subgroup of paramyxoviridae, were investigated by immunoprecipitation and SDS-polyacrylamide gel electrophoresis for their major structural proteins, i.e., hemagglutinin (H), nucleocapsid (NC), fusion (F), and matrix (M) proteins. The molecular weights of the four structural proteins of MV and CDV were confirmed to correspond to those previously reported by several investigators. Structural proteins of RV were analyzed for the first time in the present study and found to have molecular weights of 74,000, 62,000, 44,000, and 40,000 for H, HC, F, and M proteins, respectively. By labeling with glucosamine, the presence of carbohydrate moiety was found in H protein for all the three viruses and in F protein of CDV. The serums from the convalescent animals infected with respective virus disclosed one-way cross pattern depending on the combinations of virus and antiserums, but failed to show the reciprocal cross reactivity. On the other hand, hyperimmune serums to respective virus showed the reciprocal cross-reactivity with the four structural proteins indicating that each of the major structural proteins possesses the antigen common to all three morbilliviruses.  相似文献   

20.
The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号