首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary When single-barrelled electrodes (5–60 M) were advanced under manual control from the mucosal side of the epithelium the mucosal membrane was on average indented by about 40 m before the microelectrode penetrated the cell. Since this dimpling was comparable with the total depth of the cell, which recovered its original shape within 0.5 sec, the steady intracellular potential was recorded only about 14 m from the basal (serosal) membrane. Fast recording of the associated change in potential revealed an abrupt drop to –26 mV at a mean rate of 84 V/sec, followed by a further slow drop to a steady value of about –50 mV at a mean rate of 0.28 V/sec. The initial level of –26 mV may be regarded as the potential difference across the mucosal membrane. This conclusion was confirmed by mounting the microelectrode on a piezoelectric probe, which delivered 3 m jabs in less than 0.5 msec. With this device in operation to prevent dimpling, the mean potential difference across the mucosal membrane was recorded as –29 mV. In all cases the potential across the basal membrane was recorded as –52 mV. Manual advance of the microelectrode tip within the cytoplasm yielded an intracellular potential gradient of 0.6 mV/m. The same potential profile and membrane potentials were demonstrated on penetrating the epithelium from the serosal side, and measurements with multibarrelled electrodes whose tips were staggered in depth gave roughly the same internal potential gradient. The resistivity of the cytoplasm was determined by a triple-barrelled microelectrode, and varied from 10 times that ofNecturus saline at the mucosal end of the cell to 4 times in the middle and 6 times at the serosal end.  相似文献   

2.
Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g–1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g–1 h–1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Yethanol) decreased from 0.34 g g–1 to 0.025 g g–1 and Yxylitol increased from 0.15 g g–1 to 0.87 g g–1 (=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g–1 and 0.58 g g–1 h–1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.Electronic supplementary material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the electronic supplementary materialAn erratum to this article can be found at  相似文献   

3.
Activation kinetics of the sodium and potassium conductances were re-examined in fresh axons of Loligo forbesi exhibiting very little if any potassium accumulation and a very small leak conductance, special attention being paid to the initial lag phase which precedes the turning-on of the conductances. The axons were kept intact and voltage-clamped at 2–3°C.In all cases, the rising phase of the currents could be fitted with very good accuracy using the Hodgkin-Huxley (1952) equations although, in most cases, the turning-on of the conductance did not coincide with the beginning of the depolarizing test pulse. The delay which separates the change in potential and the turning-on of current (the activation delay) was analyzed quantitatively for different prepulse and pulse potentials. The measured activation delay differed significantly from the delay predicted by the original HH equations. This difference (the non-HH delay) varied with prepulse and pulse potentials. For the potassium current, the relationship between the non-HH delay and pulse potential for a constant prepulse was bell shaped, the maximum value (0.7 ms for a prepulse to –80 mV) being reached for about 0 mV For this same current, the relationship between the non-HH delay and the prepulse potential for a constant pulse potential was sigmoidal, starting from a minimum value of around 0.5 ms at –100 mV and rising to 5 ms at –15 mV Essentially similar results were obtained for the sodium current although the non-HH delay was three to five times smaller and the dependency upon prepulse potential not significant. These results are in agreement with previous observations on squid axons and frog nodes of Ranvier and suggest that the opening of an ionic channel is preceded by a short but essential voltage-dependent conformational change of the channel protein. Offprint requests to: Y. Pichon  相似文献   

4.
Summary The nonlinear membrane current-voltage relationship (I–V curve) for intact hyphae ofNeurospora crassa has been determined by means of a 3-electrode voltage-clamp technique, plus quasi-linear cable theory. Under normal conditions of growth and respiration, the membraneI–V curve is best described as a parabolic segement convex in the direction of depolarizing current. At the average resting potential of –174 mV, the membrane conductance is 190 mhos/cm2; conductance increases to 240 mhos/cm2 at –300 mV, and decreases to 130 mhos/cm2 at 0 mV. Irreversible membrane breakdown occurs at potentials beyond this range.Inhibition of the primary electrogenic pump inNeurospora by ATP withdrawal (with 1mm KCN) depolarizes the membrane to the range of –40 to –70 mV and reduces the slope of theI–V curve by a fixed scaling factor of approximately 0.8. For wild-typeNeurospora, compared under control conditions and during steady-state inhibition by cyanide, theI–V difference curve — presumed to define the current-voltage curve for the electrogenic pump — is a saturation function with maximal current of 20 A/cm2, a half-saturation potential near –300 mV, and a projected reversal potential of ca. –400 mV. This value is close to the maximal free energy available to the pump from ATP hydrolysis, so that pump stoichiometry must be close to 1 H+ extruded:1 ATP split.The time-courses of change in membrane potential and resistance with cyanide are compatible with the steady-stateI–V curves, under the assumption that cyanide has no major effects other than ATP withdrawal. Other inhibitors, uncouplers, and lowered temperature all have more complicated effects.The detailed temporal analysis of voltage-clamp data showed three time-constants in the clamping currents: one of 10 msec, for charging the membrane capacitance (0.9 F/cm2) a second of 50–75 msec; and a third of 20–30 sec, perhaps representing changes of intracellular composition.  相似文献   

5.
Summary Stage V and VI (Dumont, J.N., 1972.J. Morphol. 136:153–180) oocytes ofXenopus laevis were treated with collagenase to remove follicular cells and were placed in K-free solution for 2 to 4 days to elevate internal [Na]. Na/K pump activity was studied by restoring the eggs to normal 3mm K Barth's solution and measuring membrane current-voltage (I–V) relationships before and after the addition of 10 m dihydroouabain (DHO) using a two-microelectrode voltage clamp. Two pulse protocols were used to measure membraneI–V relationships, both allowing membrane currents to be determined twice at each of a series of membrane potentials: (i) a down-up-down sequence of 5 mV, 1-sec stair steps and (ii) a similar sequence of 1-sec voltage pulses but with consecutive pulses separated by 4-sec recovery periods at the holding potential (–40 mV). The resulting membraneI–V relationships determined both before and during exposure to DHO showed significant hysteresis between the first and second current measurements at each voltage. DHO difference curves also usually showed hysteresis indicating that DHO caused a change in a component of current that varied with time. Since, by definition, the steady-state Na/K pumpI–V relationship must be free of hysteresis, the presence of hysteresis in DHO differenceI–V curves can be used as a criterion for excluding such data from consideration as a valid measure of the Na/K pumpI–V relationship. DHO differenceI–V relationships that did not show hysteresis were sigmoid functions of membrane potential when measured in normal (90mm) external Na solution. The Na/K pump current magnitude saturated near 0 mV at a value of 1.0–1.5 A cm–2, without evidence of negative slope conductance for potentials up to +55 mV. The Na/K pump current magnitude in Na-free external solution was approximately voltage independent. Since these forward-going Na/K pumpI–V relationships do not show a region of negative slope over the voltage range –110 to +55 mV, it is not necessary to postulate the existence of more than one voltage-dependent step in the reaction cycle of the forward-going Na/K pump.  相似文献   

6.
1. The lipid bilayer technique was used to characterize the biophysical and pharmacological properties of several ion channels formed by incorporating amyloid beta protein fragment (AP) 1–40 into lipid membranes. Based on the conductance, kinetics, selectivity, and pharmacological properties, the following AP[1–40]-formed ion channels have been identified: (i) The AP[1–40]-formed bursting fast cation channel was characterized by (a) a single channel conductance of 63 pS (250/50 mM KCl cis/trans) at +140 mV, 17 pS (250/50 mM KCl cis/trans) at –160 mV, and the nonlinear current–voltage relationship drawn to a third-order polynomial, (b) selectivity sequence P K > P Na > P Li = 1.0:0.60:0.47, (c) Po of 0.22 at 0 mV and 0.55 at +120 mV, and (d) Zn2+-induced reduction in current amplitude, a typical property of a slow block mechanism. (ii) The AP[1–40]-formed spiky fast cation channel was characterized by (a) a similar kinetics to the bursting fast channel with exception for the absence of the long intraburst closures, (b) single channel conductance of 63 pS (250/50 KCl) at +140 mV 17 pS (250/50 KCl) at –160 mV, the current–voltage relationship nonlinear drawn to a third-order polynomial fit, and (c) selectivity sequence P Rb > P K > P Cs > P Na > P Li = 1.3:1.0:0.46:0.40:0.27. (iii) The AP[1–40]-formed medium conductance channel was charcterized by (a) 275 pS (250/50 mM KCl cis/trans) at +140 mV and 19 pS (250/50 mM KCl cis/trans) at –160 mV and (b) inactivation at Vms more negative than –120 and more positive than +120 mV. (iv) The AP[1–40]-formed inactivating large conductance channel was characterized by (a) fast and slow modes of opening to seven multilevel conductances ranging between 0–589 pS (in 250/50 mM KCl) at +140 mV and 0–704 pS (in 250/50 mM KCl) at –160 mV, (b) The fast mode which had a conductance of <250 pS was voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.2 s at +36 mV. The slow mode which had a conductance of >250 pS was also voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.0 s at –76 mV, (c) the value of P K/P choline for the fast mode was 3.9 and selectivity sequence P K > P Cs > P Na > P Li = 1.0:0.94:0.87:0.59. The value of P K/P choline for the slow mode was 2.7 and selectivity sequence P K > P Na > P Li > P Cs = 1.0:0.59:0.49:0.21, and (d) asymmetric blockade with 10 mM Zn2+-induced reduction in the large conductance state of the slow mode mediated via slow block mechanism. The fast mode of the large conductance channel was not affected by 10 mM Zn2+.2. It has been suggested that, although the bursting fast channel, the spiky fast channel and the inactivating medium conductance channel are distinct, it is possible that they are intermediate configurations of yet another configuration underlying the inactivating large conductance channel. It is proposed that this heterogeneity is one of the most common features of these positively-charged cytotoxic amyloid-formed channels reflecting these channels ability to modify multiple cellular functions.3. Furthermore, the formation of -sheet based oligomers could be an important common step in the formation of cytotoxic amyloid channels.  相似文献   

7.
Summary Taste discs were dissected from the tongue ofR. ridibunda and their cells dissociated by a collagenase/low Ca/mechanical agitation protocol. The resulting cell suspension contained globular epithelial cells and, in smaller number, taste receptor cells. These were identified by staining properties and by their preserved apical process, the tip of which often remained attached to an epithelial (associated) cell. When the patch pipette contained 110mm KCl and the cells were superfused with NaCl Ringer's during whole-cell recording, the mean zero-current potential of 22 taste receptor cells was –65.2 mV and the slope resistance 150 to 750 M. Pulse-depolarization from a holding voltage of –80 mV activated a transient TTX-blockable inward Na current. Activation became noticeable at –25 mV and was half-maximal at –8 mV. Steady-state inactivation was half-maximal at –67 mV and complete at –50 mV. Peak Na current averaged –0.5 nA/cell. The Ca-ionophore A23187 shifted the activation and inactivation curve to more negative voltages. Similar shifts occurred when the pipette Ca was raised. External Ni (5mm) shifted the activation curve towards positive voltages by 10 mV. Pulse depolarization also activated outward K currents. Activation was slower than that of Na current and inactivation slower still. External TEA (7.5mm) and 4-aminopyridine (1mm) did not block, but 5mm Ba blocked the K currents. K-tail currents were seen on termination of depolarizing voltage pulses. A23187 shifted theI K(V)-curve to more negative voltages. Action potentials were recorded when passing pulses of depolarizing outward current. Of the frog gustatory stimulants, 10mm Ca caused a reversible 5-to 10-mV depolarization in the current-clamp mode. Quinine (0.1mm, bitter) produced a reversible depolarization accompanied by a full block of Na current and, with slower time-course, a partial block of K currents. Cyclic AMP (5mm in the external solution or 0.5 m in the pipette) caused reversible depolarization (to –40 to –20 mV) due to partial blockage of K currents, but only if ATP was added to the pipette solution. Similar responses were elicited by stimulating the adenylate cyclase with forskolin. Blockage of cAMP-phosphodiesterase enhanced the response to cAMP. These results suggest that cAMP may be one of the cytosolic messengers in taste receptor cells. Replacement of ATP by AMP-PNP in the pipette abolished the depolarizing response to cAMP. Inclusion of ATP--S in the pipette caused slow depolarization to –40 to –20 mV, due to partial blockage of K currents. Subsequently, cAMP was without effect. The remaining K currents were blockable by Ba. These results suggest that cAMP initiates phosphorylation of one set of K channels to a nonconducting conformation.  相似文献   

8.
Summary Cell K activity,a k, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30–60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.Under control conditionsa k r was nearly constant among skins (mean±SD=92±8mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 A/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase ina k r after inhibition of cell current was observed, on the average the change was not significant (98±11mM after amiloride, 101±12mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from –42 to –77 mV, hyperpolarized after inhibition of cell current, initially to –109±5mV, then depolarizing to a stable value (–88±5mV) after 15–25 min. At this time K was above equilibrium (E k=98±2mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport.The measurement ofa k r permitted the calculation of the passive K current and pump current under control conditions. assuming a constant current source with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.  相似文献   

9.
Summary Forskolin (i.e, cAMP)-modulation of ion transport pathways in filter-grown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT29 was studied by combined Ussing chamber and microimpalement experiments.Changes in electrophysiological parameters provoked by serosal addition of 10–5 m forskolin included: (i) a sustained increase in the transepithelial potential difference (3.9±0.4 mV). (ii) a transient decrease in transepithelial resistance with 26±3 · cm2 from a mean value of 138±13 · cm2 before forskolin addition, (iii) a depolarization of the cell membrane potential by 24±1 mV from a resting value of –50±1 mV and (iv) a decrease in the fractional resistance of the apical membrane from 0.80±0.02 to 0.22±0.01. Both, the changes in cell potential and the fractional resistance, persisted for at least 10 min and were dependent on the presence of Cl in the medium. Subsequent addition of bumetanide (10–4 m), an inhibitor of Na/K/2Cl cotransport, reduced the transepithelial potential, induced a repolarization of the cell potential and provoked a small increase of the transepithelial resistance and fractional apical resistance. Serosal Ba2+ (1mm), a known inhibitor of basolateral K+ conductance, strongly reduced the electrical effects of forskolin. No evidence was found for a forskolin (cAMP)-induced modulation of basolateral K+ conductance.The results suggest that forskolin-induced Cl secretion in the HT-29 cl.19A colonic cell line results mainly from a cAMP-provoked increase in the Cl conductance of the apical membrane but does not affect K+ or Cl conductance pathways at the basolateral pole of the cell. The sustained potential changes indicate that the capacity of the basolateral transport mechanism for Cl and the basal Ba2+-sensitive K+ conductance are sufficiently large to maintain the Cl efflux across the apical membrane. Furthermore, evidence is presented for an anomalous inhibitory action of the putative Cl channel blockers NPPB and DPC on basolateral conductance rather than apical Cl conductance.  相似文献   

10.
Zusammenfassung Aus einer der Sehzellen 1–6 vonCalliphora erythrocephala (, rechtes Auge) aus dem Ommatidium (d, v) = (56, 55) (Abb. 5) wird intrazellulär abgeleitet. Das Euhepotential der Zelle wird während der gesamten Versuchsdauer gemessen. Zu Beginn beträgt es –52,5 mV um sich dann für ca. 1000sec auf –48 mV zu halten; anschließend steigt das Ruhepotential für 1200 sec auf –25 mV. Die Form der Antworten und die Kennlinien werden für rechteckförmige Reize in Abhängigkeit davon dargestellt. Für beide Werte des Ruhepotentials werden jeweils die Amplituden- und Phasengänge der Sehzelle in Abhängigkeit von der Intensität für 4,5 Zehnerpotenzen mit sinusförmig moduliertem Licht (Modulationsgrad 16%) für den Zeitraum 0,5–4,5 sec nach Reizbeginn vom dunkeladaptierten Zustand ausgehend bestimmt.Nimmt der Betrag des Ruhepotentials ab, so werden die Kennlinien für rechteckförmige Reize flacher. Beim Amplitudengang nimmt die Amplitude ab und das Maximum des Amplitudenganges verschiebt sich zu tieferen Frequenzen. Eine einfache Gesetzmäßigkeit ist nicht zu erkennen. Beim Phasengang nimmt die Phase zu. Der Phasengang kann im Bereich von 10–100 Hz durch eine Totzeit, die von der Intensität abhängt (Abb. 16) beschrieben werden. Die Phasenzunahme läßt sich für alle Intensitäten durcheinen Faktor angeben. Dieser besehreibt um wieviel die Totzeit bei der Änderung des Ruhepotentials von –48 mV auf –25 mV zunimmt; er beträgt 1,34±0,03 (S.A.).
Transfer characteristics of the visual cell ofCalliphora erythrocephala 1. Dependence on the resting potential
Summary Intracellular recordings are made out of the visual cells 1–6 of the ommatidia ofCalliphora erythrocephala (, right eye) with the coordinates (d, v) = (56, 55) (Fig. 5). During the whole experiment the resting potential of the cell is recorded. It starts with –52.5 mV to stay for 1000 sec on –48 mV and then alters to –25 mV and stays there for 1200 sec. The form of the response of the cell and the characteristic curve are shown for rectangular stimuli. We measure on both values of the resting potential the amplitude and the phase characteristics of the visual cell and show their dependency on the intensity of light for 4.5 decades for sinusoidal modulated light with a modulation degree of 16%. We start at a dark adapted level and analyse the response in the tune intervall 0.5–4.5 sec after onset of the stimulus. When the resting potential declines, the characteristic curve gets less steep. The amplitude decreases and the maximum of the amplitude characteristics goes to lower frequencies. We cannot recognize a simple law of dependency. At the phase characteristics the phase lag increases. The phase characteristics can be described through a time lag in the range 10–100 c/s which is dependent on the intensity of light (Fig. 16). How the phase angle increases is given byone factor for all intensities. This factor says how the time lag increases if the resting potential changes from –48 mV to –25 mV. Its value is 1.34±0.03 (S.D.).


Diese Arbeit widmen wir Herrn Prof. Dr. Dr. h. c. H. Autrum in Verehrung und Dankbarkeit zu seinem 65. Geburtstag.

Die Experimente wurden mit Sachmitteln durchgeführt, die Herrn Prof. Dr. H. Autrum und Herrn Dr. A. Treff von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt wurden.  相似文献   

11.
Development of a complex response evokedin vivo in the neurons of lamina II of the spinal cord gray matter in cats by single electrical stimulation of primary afferents was simulated using mathematical models of these neurons, including the electrically excitable soma and axon and passive equivalent nonuniform dendrite. The intracellular response consisted of an excitatory postsynaptic potential (EPSP) with an action potential (AP) followed by a two-component hyperpolarization determined by the afterprocesses of hyperpolarization. The fast early hyperpolarization component appeared at the threshold stimulation of the most fast-conducting fibers; with an increase in the stimulation intensity it became superimposed on a slow later component. The direction of the early component changed after the hyperpolarizing shift of the membrane potential by 10 to 20 mV with respect to the resting level of –60÷–70 mV. The later component was abolished but not reversed even by the 50-mV shifts (to the –120-mV level). Simulation experiments showed that observedin vivo hyperpolarization-induced modification of the complex response is determined principally by a local interaction of electrotonus with synatic processes and does not depend on the behavior of the usual potential-activated sodium and potassium conductances in the soma. Inhibitory chloride synapses located on the soma and close to it represent the main source of fast early hyperpolarization, while distal dendritic potassium synapses are responsible for its late phase.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 382–390, September–October, 1994.  相似文献   

12.
Summary We have investigated the pacemaker properties of aggregates of cells dissociated from the atria and ventricles of 10 to 14-day-old chick embryonic hearts using a two-microelectrode current and voltage-clamp technique. These preparations usually beat spontaneously and rhythmically in tissue culture medium containing 1.3mm potassium with a beat rate typically in the range of 15–60 beats per minute. The beat rate results show considerable variability, which precludes any statistically significant comparison between the spontaneous activity of atrial and ventricular cell preparations at 10–14 days of development. However, the shapes of pacemaker voltage changes do exhibit differences characteristic of cell type. Spontaneous atrial preparations rapidly depolarize from maximum diastolic potential (–90 mV) to a plateau range of pacemaker potentials (–80 to –75 mV). The membrane subsequently depolarizes more gradually until threshold (–65 mV) is reached. In contrast, spontaneously beating ventricular cell preparations slowly hyperpolarize after maximum diastolic potential to the –100 to –95 mV range before gradually depolarizing toward threshold. Voltage-clamp analysis reveals a virtual lack of any time-dependent pacemaker current in atrial preparations. These preparations are characterized by an approximately linear background current (I bg) having a slope resistance of 100 K cm2. Ventricular preparations have a potassium ion pacemaker current with slow kinetics (I K 2), and a second time-dependent component (I x) which is activated at potentials positive to –65 mV. The background current of these preparations displays inward rectification. Computer simulations of pacemaking reveal that the initial rapid phase of pacemaker depolarization in atrial cells is determined by the membrane time constant, which is the product of membrane capacitance and the slope resistance ofI bg. The hyperpolarization after maximum diastolic potential of ventricular cells is caused byI K 2. The final slow phase of depolarization in both cell types is caused in part by the steady-state amplitude of the fast inward sodium current (I Na). This component has negative slope conductance which effectively increases the slope resistance in the vicinity of threshold compared to TTX-treated preparations. This mechanism is sufficient to produce interbeat intervals several seconds in duration, even in the absence of time-dependent pacemaker current, provided that the background current is at the appropriate level.  相似文献   

13.
Sabine Doll  Robert Hauer 《Planta》1981,152(2):153-158
The membrane potential of isolated vacuoles of red beet (Beta vulgaris L.) was estimated using several methods. The quenching of the fluorescence of the cyanine dyes 3,3-diethylthiodicarbocyanine iodide (DiS-C2–(5)) and 3,3-dipropylthiodicarbocyanine iodide (DiS-C3–(5)) in vacuoles indicated a transmembrane potential difference, negative inside at low external potassium concentrations. The was found to be-55 mV with two other methods, the distribution of 204T1+ in the presence of valinomycin and the distribution of the lipophilic cation triphenylmethylphosphonium. Uncouplers reduced this value to-35 mV. High external potassium concentrations, comparable to cytosolic values, abolished the membrane potential almost completely. The addition of 1 mM Tris-Mg2+-ATP markedly hyperpolarized the membrane to-75 mV. This effect was prevented by inhibitors of the ATPase activity located in isolated vacuole membranes.Abbreviations ANS aminonaphthalene sulfonate - DiS-C2–(5) 3,3-diethylthiodicarbocyanine iodide - DiS-C3–(5) 3,3-dipropylthiodicarbocyanine iodide - EDAC 1-ethyl-3-C-3dimethylaminopropylcarbodiimide - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - MES morpholinoethylsulfonic acid - TPP+ tetraphenylphoshonium - TPMP triphenylmethylphosphonium - Tris tris(hydroxymethyl)aminomethane  相似文献   

14.
Summary Cystic fibrosis (CF) is characterized by abnormal epithelial Cl conductance (GCl). In vitro studies that have shown that cAMP regulation is an intrinsic property of the CF-affected GCl(CF-GCl) have been carried out previously on cultured secretory cells and on nonepithelial cells. Even though GCl in absorption is defective in CF, a clear demonstration of cAMP regulation of CF-GCl in a purely absorptive tissue is lacking. We studied the cAMP regulation of CF-GCl in the microperfused intact human reabsorptive sweat duct. About 40% of the ducts responded to cAMP (responsive) while the remainder of the ducts did not. In responsive ducts, cAMP-elevating agents: -adrenergic agonist isoproterenol (IPR), CPT-cAMP, forskolin, theophylline or IBMX increased G tby about 2.3-fold (n = no. of ducts = 8). Removal of media Cl, but not amiloride pretreatment (in the lumen), abolished the cAMP response, indicating exclusive activation of GCl. cAMP activated both apical and basolateral GCl. cAMP hyperpolarized gluconate: Cl (lumen: bath) transepithelial bionic potentials (V t=–20.3±5.2 mV, mean ±se, n=9) and transepithelial 3 1 luminal NaCl dilution diffusion potentials (V t=–8.8±2.9 mV, n=5). cAMP activated basolateral GCl as indicated by increased bi-ionic (gluconate: Cl, bath: lumen) diffusion potentials (by about 12 mV). The voltage divider ratio in symmetric NaCl solutions increased by 60%. Compared to responsive ducts, nonresponsive ducts were characterized by smaller spontaneous transepithelial potentials in symmetrical Ringer's solution (V t=–6.9±0.8 mV, n=24, nonresponsive vs. –19.4±1.8 mV, n=22, responsive ducts) but larger bi-ionic potentials (–94±6 mV, n=35, nonresponsive vs. –65±5 mV, n=17, responsive ducts) and dilution diffusion potentials (–40±5 mV, n=11, nonresponsive vs. –29±3 mV, n=7, responsive ducts). These results are consistent with an inherently (prestimulus) maximal activation of GCl in nonresponsive ducts and submaximal activation of GCl in responsive ducts. We conclude that cAMP activates CF-G Cl which is expressed and abnormal in both apical and basal membranes of this absorptive epithelium in CF.Abbreviations CF cystic fibrosis - G t transepithelial conductance - V b electrical potential across the basolateral membrane - V a electrical potential across the apical membrane - V t transepithelial potential - V b transepithelial currentinduced voltage deflections across the basolateral membrane - V a transepithelial current-induced voltage deflections across the apical membrane - V t transepithelial current-induced voltage deflection across the epithelium - VDR voltage divider ratio - GCl transepithelial Cl conductance - CF-GCl cystic fibrosis-affected Cl conductance - EMF electromotive force - IPR isoproterenol - IBMX 3-isobutyl-1-methylxanthine - CPT-cAMP chlorophenylthio-adenosine 3-5 cyclic monophosphate - PGE2 prostaglandin E2  相似文献   

15.
Summary Intracellular potentials were measured, using a piezoelectric electromechanical transducer to impale Ehrlich ascites tumor cells with capillary microelectrodes. In sodium Ringer's, the potential immediately after the penetration was –24±7 mV, and decayed to a stable value of about –8 mV within a few msec. The peak potentials disappeared in potassium Ringer's and reappeared immediately after resuspension in sodium. Ringer's, whereas the stable potentials were only slightly influenced by the change of medium. The peak potential is in good agreement with the Nernst potential for chloride. This is also the case when cell sodium and potassium have been changed by addition of ouabain. It is concluded that the peak potentials represent the membrane potential of the unperturbed cell, and that chloride is in electrochemical equilibrium across the cell membrane.The membrane potential of about –11 mV previously reported corresponds to the stable potential in this study, and is considered as a junction potential between damaged cells and their environment. Similar potential differences were recorded between a homogenate of cells and Ringer's.The apparent membrane resistance of Ehrlich cells was about 70 cm2. This is two orders of magnitude less than the value calculated from36Cl fluxes, and may, in part, represent a leak in the cell membrane.For comparison, the influence of an eventual leak on measurements in red cells and mitochondria is discussed.  相似文献   

16.
Summary The calcium binding constant associated with external surface charge in a position to influence the voltage sensing charges for potassium channel gating appears to be 30 molar–1, a value much larger than previously thought and in approximate agreement with that found for artificial membranes composed of the lipid brain phosphatidylserene. Fixed charge on the periaxonal membrane surface is distributed in such a way that much larger charges occur at a distance of at least 8 angstroms from the channel pore openings. The separation between the ion pathway and the channel gating charge appears to be greater than or equal to 8 angstroms. Periaxonal surface charge which is in a position to determine the surface potential for gating has a magnitude greater than or equal to one (negative) electronic charge per 182 square angstrom before calcium binding, which is reduced to –e/625 Å in a normal divalent ionic environment. With the normal divalent ionic composition of seawater the surface potential at a position to influence the gating voltage sensor is –15 millivolts relative to the bulk external potential. The external surface potential is –3 mV at the pore mouth. There appears to be a negligible amount of fixed charge on the axoplasmic surface in the vicinity of the ion channel opening. Further, our results confirm earlier measurements that have given a negligible amount of axoplasmic surface fixed charge whose field components would be in a position to influence the channel gating charges.  相似文献   

17.
Summary Electrical membrane properties of the cellular slime moldDictyostelium discoideum were investigated with the use of intracellular microelectrodes. The rapid potential transients (1 msec) upon microelectrode penetration of normal cells had a negative-going peak-shaped time course. This indicates that penetration of a cell with a microelectrode causes a rapid depolarization, which can just be recorded by the microelectrode itself. Therefore, the initial (negative) peak potential transient valueE p (–19 mV) should be used as an indicator of the resting membrane potentialE m ofD. discoideum before impalement, rather than the subsequent semistationary depolarized valueE n (–5 mV). Using enlarged cells such as giant mutant cells (E p=–39 mV) and electrofused normal cells (E p=–30 mV) improved the reliability ofE p as an indicator ofE m. From the data we concluded thatE m ofD. discoideum cells bathed in (mm) 40 NaCl, 5 KCl and 1 CaCl2 is at least –50 mV. This potential was shown to be dependent on extracellular potassium. The average input resistanceR i of the impaled cells was 56 M for normalD. discoideum. However, our analysis indicates that the membrane resistance of these cells before impalement is >1 G. Specific membrane capacitance was 1–3 pF/cm2. Long-term recording of the membrane potential showed the existence of a transient hyperpolarization following the rapid impalement transient. This hyperpolarization was associated with an increase inR i of the impaled cell. It was followed by a depolarization, which was associated with a decrease inR i. The depolarization time was dependent on the filling of the microelectrode. The present characterization of the electrical membrane properties ofDictyostelium cells is a first step in a membrane electrophysiological analysis of signal transduction in cellular slime molds.  相似文献   

18.
Summary The dielectric breakdown in the membranes of cells ofValonia utricularis was investigated using intracellular electrodes and 500-sec current pulses. Electrical breakdown, which occurs when the membrane potential reaches a well-defined critical value, is not associated with global damage to the cell or its membranes (the membrane reseals in <5 sec). It was thus possible to investigate the effect of temperature on dielectric breakdown in single cells. It was found that the critical potential for breakdown was strongly dependent on temperature, decreasing from 1000 mV at 4°C to 640 mV at 30°C. The decrease in the breakdown potential with increasing temperature and the very short rise-time of the breakdown current (1 sec) suggests that the Wien field dissociation does not play a major role in the breakdown process. It is shown that the nonlinearI–V characteristics observed at different temperatures can be accurately accounted for with no adjustable parameters, by considerations of the mechanical compression of the membrane due to stresses induced by the electric field. Electrical breakdown on this scheme results from an electromechanical instability in the membrane. On this basis the present results indicate that the elastic modulus of the region of the membrane where breakdown occurs, decreases by a factor of 2 with increasing temperature from 4 to 30°C. On the assumption of a thickness of 4.0 nm and a dielectric constant of 5, the elastic modulus is estimated to have a value of 5×106 Nm–2 at 20°C.  相似文献   

19.
Summary Membrane potential and resistance were recorded from parenchymal cells of oat (Avena) coleoptiles, using one and two intracellular electrodes. Membrane potential is largest (–100 mV) in impalements with low input resistance (2–4 M), and is less negative (–50 mV) in penetrations with high input resistance (> 20 m). The interpretation is that the electrode lodges in the vacuole which is positive to the cytoplasm (but still negative to the external solution), and that measurements of net membrane potential are compromised to varying degrees by leakage shunts introduced across the high resistance vacuolar membrane by the electrode. This conclusion is supported by several additional lines of evidence. (1) It is possible to convert large-R/small-V impalements into small-R/large-V penetrations by passing excess current through the electrode or by briefly ringing the capacitance neutralization circuit in the amplifier. The cells usually recover their resistance in a few minutes, with a concomitant decrease in the negativity of the membrane potential. (2) Changes in external [K] affect the measuree potential by an amount that is independent of the input resistance of the impalement. This is consistent with an effect of [K] o on the potential of the plasma membrane and the occurrence of leakage shunts primarily at the tonoplast. (3) Quantitatively, the effects of a change in [K] o on resistance indicate that nearly 90 percent of the input resistance of unshunted cells resides in the tonoplast. (4) The effects of metabolic inhibitors (DNP, CN) on potential are smaller in large-R than in small-R impalements. This observation suggests there are electrogenic pumps contributing to the membrane potential at both the plasmalemma and tonoplast. Finally, we conclude that with an electrode in the vacuole it is possible to record potentials that are dominated by the contribution of the plasma membrane, provided care is taken to select impalements combining both large, negative potential and low input resistance.  相似文献   

20.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号