首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of HIV-1 cytotoxic T lymphocyte (CTL) epitopes presented by each HLA allele and the characterization of their CTL responses are important for the study of pathogenesis of AIDS and the development of a vaccine against it. In the present study, we focused on identification and characterization of HIV-1 epitopes presented by HLA-B*5401, which is frequently found in the Asian population, because these epitopes have not yet been reported. We identified these epitopes by using 17-mer overlapping peptides derived from HIV-1 Gag, Pol, and Nef. Seven of these 17-mer peptides induced HLA-B*5401-restricted CD8+ T cell responses. Only five HLA-B*5401-restricted Pol- or Nef-specific CD8+ T cell responses were detected in the analysis using 11-mer overlapping peptides. Three Pol and two Nef optimal peptides were identified by further analysis using truncated peptides. These epitope-specific CTLs effectively killed HLA-B*5401-expressing target cells infected with HIV-1 recombinant vaccinia virus, indicating that these peptides were naturally processed by HLA-B*5401 in HIV-1-infected cells. These epitope-specific CD8+ T cells were elicited in more than 25% of chronically HIV-1-infected individuals carrying HLA-B*5401. Therefore, these epitopes should prove useful for studying the pathogenesis of AIDS in Asia and developing a vaccine against HIV-1.  相似文献   

2.
The antigenic sites for human T lymphocytes on hepatitis B surface Ag (HBsAg) were studied by using synthetic oligopeptides. T cell lines of the helper/inducer class, which were isolated from hepatitis B vaccine recipients, were found to react strongly and in an Ag-specific way with peptides corresponding to a sequence of 10 to 30 amino acids near the amino terminus of the HBsAg molecule. Cells with surface expression of the antigenic determinant contained in these synthetic peptides induced both proliferative and cytotoxic responses in the hepatitis B-specific T cells. The results indicate that amino acid residues 24-27 of HBsAg could be directly involved in this T cell determinant. Inhibition studies with mAb to MHC class II Ag and target cells from various HLA-typed individuals suggest that some T cell responses to this determinant of HBsAg might be restricted by the DPw4 molecule. However, the possibility exists that more than one of the MHC class II molecules could be involved as restricting elements of T cell responses to this synthetic peptide. In vivo experiments with synthetic peptides such as those described here are needed to demonstrate the possibility of enhancing HBsAg immune responses in some individuals.  相似文献   

3.
Rino Rappuoli is a graduate of Siena University, where he also earned his PhD before moving to the Sclavo Research Center, the Italian vaccine institute, also in Siena. He then spent two years in the USA, mostly at Harvard with John Murphy and Alwin Pappenheimer working on a new diphtheria vaccine based on a non-toxic mutant of diphtheria toxin which has since become the basis for conjugate vaccines against haemophilus, meningococcus, and pneumococcal infections, before returning to the Sclavo Research Center where he developed an acellular vaccine based on a mutant pertussis toxin. With many achievements in vaccine development to his credit, he is now Global Head of Vaccines Research and Development for Novartis Vaccines in Siena, and has most recently pioneered reverse vaccinology, in which the genome of the pathogen is screened for candidate antigenic and immunogenic vaccine components. We spoke to him about the potential for outbreaks of the kind we are now seeing with Ebolavirus in West Africa, and what can be done to prevent them.  相似文献   

4.
Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.  相似文献   

5.
Dendritic cells (DC) are the major APCs involved in naive T cell activation making them prime targets of vaccine research. We observed that mRNA was efficiently transfected, resulting in superior translation in DC compared with other professional APCs. A single stimulation of T cells by HIV gag-encoded mRNA-transfected DC in vitro resulted in primary CD4(+) and CD8(+) T cell immune responses at frequencies of Ag-specific cells (5-12.5%) similar to primary immune responses observed in vivo in murine models. Additionally, mRNA transfection also delivered a maturation signal to DC. Our results demonstrated that mRNA-mediated delivery of encoded Ag to DC induced potent primary T cell responses in vitro. mRNA transfection of DC, which mediated efficient delivery of antigenic peptides to MHC class I and II molecules, as well as delivering a maturation signal to DC, has the potential to be a potent and effective anti-HIV T cell-activating vaccine.  相似文献   

6.
Lack of a universal vaccine against all serotypes of influenza A viruses and recent progress on T cell-related vaccines against influenza A virus illuminate the important role of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes (CTLs) in anti-influenza virus immunity. However, the diverse HLA alleles among humans complicate virus-specific cellular immunity research, and elucidation of cross-HLA allele T cell responses to influenza virus specificity requires further detailed work. An ideal CTL epitope-based vaccine would cover a broad spectrum of epitope antigens presented by most, if not all, of the HLAs. Here, we evaluated the 2009 pandemic influenza A (H1N1) virus-specific T cell responses among the HLA-A24+ population using a rationally designed peptide pool during the 2009 pandemic. Unexpectedly, cross-HLA allele T cell responses against the influenza A virus peptides were detected among both HLA-A11+ and HLA-A24+ donors. Furthermore, we found cross-responses in the entire HLA-A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele antigenic peptides within the peptide pool were identified and characterized, and the crystal structures of the major histocompatibility complex (MHC)-peptide complexes were determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the HLA-A11+ population were shown to mildly bind to the HLA-A*1101 molecule. Together with the structural models, these results partially explain the cross-allele responses. Our findings elucidate the promiscuity of the cross-allele T cell responses against influenza A viruses and are beneficial for the development of a T cell epitope-based vaccine applied in a broader population.  相似文献   

7.
Virus-specific CD4+ T cells (Th) play a crucial role in the control of lentiviral replication. To better understand the epitope-specificity of CD4+ Th repertoire to the envelope glycoprotein (Env) of simian immunodeficiency virus (SIV), we analyzed Th responses to 20-mer overlapping Env peptides in eight genetically heterogeneous macaques chronically infected with live attenuated SIV. A set of 19 'broadly reactive' Th peptide-epitopes was defined from the distinct sets of responder peptides for individual macaques. The majority of broadly reactive peptide-epitopes (14 of 19) were uniformly distributed on the transmembrane (TM) domain of Env. Only five broadly reactive responder peptides localized to the surface domain (SU) of Env, and they were all confined to two non-glycosylated regions towards its carboxyl-terminus. This first comprehensive report of Env peptide-specific Th responses associated with attenuated SIV vaccine immunity indicates a profound influence of glycosylation on the development of Th responses and has important implications for acquired immunodeficiency syndrome (AIDS) vaccine development.  相似文献   

8.
Abstract

Many antigens are only weak immunogens, and they require adjuvants to reach a satisfactory immune response as vaccines. This is especially true for modern antigens, such as products of gene technology or synthetic peptides. Also, classically produced antigens such as diphtheria or tetanus-antigens are coupled on aluminium phosphate or aluminium hydroxide – to this day practically the only adjuvant class which is routinely used in vaccinology. Aluminium phosphate was first used in the 1920s as an immunopotentiator for the diphtheria vaccine. Since then, and up until now, it has not been possible to fully replace this unsatisfactory adjuvant. exclusion of epitope-specific suppression by the individual components, it was evident that particularly the diphtheria and tetanus constituents exerted “antigenic competition” on the HAV antigen and possibly also on the HBs antigen. By reducing the diphtheria and tetanus toxoid subunit molecules per IRIV particle, it was possible not only to increase significantly the immune response to these antigens but also to remove completely the antigenic competition on the HAV and HBs antigens. Once the optimum composition of the vaccine had been achieved (careful dosing of antigens per IRIV particle), an immunological effect clearly superior to that of comparable, aluminium-adsorbed products was obtained (Table II). The tolerability of this “supercombi vaccine” was significantly better than the commercial alum adsorbed products (Table III).  相似文献   

9.
The development of peptide-based vaccines that are useful in the therapeutic treatment of melanoma and other cancers ultimately requires the identification of a sufficient number of antigenic peptides so that most individuals, regardless of their major histocompatibility complex (MHC)–encoded class I molecule phenotype, can develop a cytotoxic T lymphocyte (CTL) response against one or more peptide components of the vaccine. While it is relatively easy to identify antigenic peptides that are presented by the most prevalent MHC class I molecules in the population, it is problematic to identify antigenic peptides that are presented by MHC class I molecules that have less frequent expression in the population. One manner in which this problem can be overcome is by taking advantage of known MHC class I supertypes, which are groupings of MHC class I molecules that bind peptides sharing a common motif. We have developed a mass spectrometric approach which can be used to determine if an antigenic peptide is naturally processed and presented by any given MHC class I molecule. This approach has been applied to the A3 supertype, and the results demonstrate that some, but not all, A3 supertype family–associated peptides can associate with all A3 supertype family members. The approach also demonstrates the shared nature of several newly identified peptide antigens. The use of this technology negates the need to test peptides for their ability to stimulate CTL responses in those cases where the peptide is not naturally processed and bound to the target MHC class I molecule of interest, thus allowing resources to be focused on the most promising vaccine candidates.  相似文献   

10.
A priority in current vaccine research is the development of adjuvants that support the efficient priming of long-lasting, CD4(+) T cell help-independent CD8(+) T cell immunity. Oligodeoxynucleotides (ODN) with immune-stimulating sequences (ISS) containing CpG motifs facilitate the priming of MHC class I-restricted CD8(+) T cell responses to proteins or peptides. We show that the adjuvant effect of ISS(+) ODN on CD8(+) T cell priming to large, recombinant Ag is enhanced by binding them to short, cationic (arginine-rich) peptides that themselves have no adjuvant activity in CD8(+) T cell priming. Fusing antigenic epitopes to cationic (8- to 10-mer) peptides bound to immune-stimulating ISS(+) ODN or nonstimulating NSS(+) ODN (without CpG-containing sequences) generated immunogens that efficiently primed long-lasting, specific CD8(+) T cell immunity of high magnitude. Different MHC class I-binding epitopes fused to short cationic peptides of different origins showed this adjuvant activity. Quantitative ODN binding to cationic peptides strikingly reduced the toxicity of the latter, suggesting that it improves the safety profile of the adjuvant. CD8(+) T cell priming supported by this adjuvant was Toll-like receptor 9 dependent, but required no CD4(+) T cell help. ODN (with or without CpG-containing sequences) are thus potent Th1-promoting adjuvants when bound to cationic peptides covalently linked to antigenic epitopes, a mode of Ag delivery prevailing in many viral nucleocapsids.  相似文献   

11.
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.  相似文献   

12.
CD8 T cells resolve intracellular pathogens by responding to pathogen-derived peptides that are presented on the cell surface by MHC class I molecules. Although most pathogens encode a large variety of antigenic peptides, protective CD8 T cell responses target usually only a few of these. To determine the mechanism by which the IFN-gamma-inducible proteasome (immuno) subunits enhance the ability of specific pathogen-derived peptides to elicit CD8 T cell responses, we generated a recombinant Listeria monocytogenes strain (rLM-E1) that secretes a model Ag encompassing the immunoproteasome-dependent E1B(192-200) and immunoproteasome-independent E1A(234-243) epitope. Analyses of Ag presentation showed that infected gene-deficient professional APCs, lacking the immunosubunits LMP7/ibeta5 and MECL-1/ibeta2, processed and presented the rLM-E1-derived E1B(192-200) epitope but with delayed kinetics. E1A epitope processing proceeded normally in these cells. Accordingly, infected gene-deficient mice failed to respond to the otherwise immunodominant E1B(192-200) epitope but mounted normal CD8 T cell responses to E1A(234-243) which was processed by the same professional APCs, from the same rLM-E1 Ag. The inability of gene-deficient mice to respond to E1B(192-200) was not explained by insufficient quantities of antigenic peptide, as splenic APC of 36-h-infected gene-deficient mice that presented the two E1 epitopes at steady state levels elicited responses to both E1B(192-200) and E1A(234-243) when transferred into LMP7+MECL-1-deficient mice. Taken together, our findings indicate that not absolute epitope quantities but early Ag-processing kinetics determine the ability of pathogen-derived peptides to elicit CD8 T cell responses, which is of importance for rational T cell vaccine design.  相似文献   

13.
《Genomics》2022,114(2):110301
Salmonella typhi is notorious for causing enteric fever which is also known as typhoid fever. It emerged as an extreme drug resistant strain that requires urgent attention to prevent its global spread. Statistically, about 11–17 million typhoid illnesses are reported worldwide annually. The only alternative approach for the control of this illness is proper vaccination. However, available typhoid vaccine has certain limitations such as poor long-term efficacy, and non-recommendation for below 6 years children, which opens the avenues for designing new vaccines to overcome such limitations. Computational-based reverse vaccinology along with subtractive genomics analysis is one of the robust approaches used for the prioritization of vaccine candidates through direct screening of genome sequence assemblies. In the current study, we have successfully designed a peptide-based novel antigen chimeric vaccine candidate against the XDR strain of S. typhi H58. The pipeline revealed four peptides from WP_001176621.1 i.e., peptidoglycan-associated lipoprotein Pal and two peptides from WP_000747548.1 i.e., OmpA family lipoprotein as promising target for the induction of immune response against S. typhi. The six epitopes from both proteins were found as immunogenic, antigenic, virulent, highly conserved, nontoxic, and non-allergenic among whole Salmonella H58 proteome. Furthermore, the binding interaction between a chimeric vaccine and human population alleles was unveiled through structure-based studies. So far, these proteins have never been characterized as vaccine targets against S. typhi. The current study proposed that construct V2 could be a significant vaccine candidate against S. typhi H58. However, to ascertain this, future experimental holistic studies are recommended as follow-up.  相似文献   

14.
15.

Background

The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with the combination of recombinant DNA and vaccinia virus (VV) vectors.

Methodology/Principal Findings

As determined by ELISPOT from splenocytes of animals immunized with either EnvBF or EnvB antigens, the majority of the cellular responses to Env were found to be clade-specific. A detailed peptide mapping of the responses reveal that when there is cross-reactivity, there are no amino acid changes in the peptide sequence or were minimal and located at the peptide ends. In those cases, analysis of T cell polifunctionality and affinity indicated no differences with respect to the cellular responses found against the original homologous sequence.Significantly, application of a mixed immunization combining both clades (B and BF) induced a broader cellular response, in which the majority of the peptides targeted after the single clade vaccinations generated a positive response. In this group we could also find significant cellular and humoral responses against the whole gp120 protein from subtype B.

Conclusions/Significance

This work has characterized for the first time the immunogenic peptides of certain EnvBF regions, involved in T cell responses. It provides evidence that to improve immune responses to HIV there is a need to combine Env antigens from different clades, highlighting the convenience of the inclusion of BF antigens in future vaccines for geographic regions where these HIV variants circulate.  相似文献   

16.
Human endogenous retrovirus W family(HERV-W) envelope(env) has been reported to be related to several human diseases, including autoimmune disorders, and it could activate innate immunity.However, there are no reports investigating whether human leukemia antigen(HLA)-A~*0201~+restriction is involved in the immune response caused by HERV-W env in neuropsychiatric diseases. In the present study, HERV-W env-derived epitopes presented by HLA-A~*0201 are described with the potential for use in adoptive immunotherapy. Five peptides displaying HLAA~*0201-binding motifs were predicted using SYFEPITHI and BIMAS, and synthesized. A CCK-8 assay showed peptides W, Q and T promoted lymphocyte proliferation. Stimulation of peripheral blood mononuclear cells from HLA-A~*0201~+ donors with each of these peptides induced peptidespecific CD8~+ T cells. High numbers of IFN-γ-secreting T cells were also detectable after several weekly stimulations with W, Q and T. Besides lysis of HERV-W env-loaded target cells, specific apoptosis was also observed. These data demonstrate that human T cells can be sensitized toward HERV-W env peptides(W, Q and T) and, moreover, pose a high killing potential toward HERV-W env-expressing U251 cells. In conclusion, peptides W Q and T, which are HERV-W env antigenic epitopes, have both antigenicity and immunogenicity, and can cause strong T cell immune responses. Our data strengthen the view that HERV-W env should be considered as an autoantigen that can induce autoimmunity in neuropsychiatric diseases, such as multiple sclerosis and schizophrenia. These data might provide an experimental foundation for a HERV-W env peptide vaccine and new insight into the treatment of neuropsychiatric diseases.  相似文献   

17.
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.  相似文献   

18.
Many potential HIV vaccine strategies are being explored in both animal model and human settings. The success of any vaccine relies on relevant antigenic determinants being presented to the immune system for the activation of broad and long-lasting immunity. Effective immunity against HIV infection will likely require both the cellular and humoral arms of the immune system, where HIV-specific killer cells eradicate infected targets and neutralizing antibody responses contribute by preventing the initial infection of host cells. As the most potent antigen presenting cell of the immune system, the dendritic cell (DC) orchestrates the activation of adaptive immune responses as well as contributing to the early innate responses to a pathogen, which may also aid in the initial control of infection. It follows therefore, that the efficiency of a vaccine antigen would be greatly enhanced if targeted to the appropriate DCs to ensure optimal presentation to and subsequently activation of the immune system. This review will discuss (i) the current status of DC biology, covering distinct DC subsets and stages of activation and how these influence the types of immune responses that are induced, (ii) how DCs can be exploited to improve the efficacy of HIV vaccine strategies currently under investigation, (iii) what has been learned from in vivo model systems using DCs, and (iv) future considerations to advance HIV vaccinology.  相似文献   

19.

Background

The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.

Methodology/Principal Findings

HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54) peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-γ ELISpot assay. The 54 peptides were compared to the 2007–2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.

Conclusions/Significance

Seventeen (17) T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.  相似文献   

20.
Developing a vaccine that will stimulate broad HIV-specific T cell responses is difficult because of the variability in HIV T cell epitope sequences, which is in turn due to the high mutation rate and consequent strain diversity of HIV-1. We used a new Class II version of the EpiMatrix T cell epitope-mapping tool and Conservatrix to select highly conserved and promiscuous Class II HLA-restricted T cell epitopes from a database of 18,313 HIV-1 env sequences. Criteria for selection were: (1) number of HIV-1 strains represented as measured by Conservatrix; (2) EpiMatrix score; and (3) promiscuity (number of unique MHC motifs contained in the peptide). Using another vaccine design tool called the EpiAssembler, a new set of overlapping, conserved and immunogenic HIV-1 peptides were engineered creating extended "immunogenic consensus" sequences. Each overlapping 9-mer of the 20-23 amino acid long immunogenic consensus peptides was conserved in a large number (range 893-2254) of individual HIV-1 strains, although the novel peptides were not representative of any single strain of HIV. We synthesized nine representative peptides. T helper cell responses to the peptides were evaluated by ELISpot (gamma-interferon) assay, using peripheral blood monocytes (PBMC) obtained from 34 healthy long term non-progressor (LT) or moderate-progressor (MP) donors (median years infected = 8.88, median CD4 T cells = 595, median VL = 1044). Nine peptides were tested, of which eight were confirmed in ELISpot assays using PBMC from the LT/MP subjects. These epitopes were ranked by Conservation and EpiMatrix score 1, 2, 3, 5, 7, 11, and 14 out of the set of 9 original peptides. Five of these peptides were selected for inclusion in an epitope-driven cross-clade HIV-1 vaccine (the GAIA vaccine). These data confirm the utility of bioinformatics tools to select and construct novel "immunogenic consensus sequence" T cell epitopes for a globally relevant vaccine against HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号