首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) and express large amounts of chaperones and protein disulfide isomerases (PDI) to meet the high demand for synthesis of proteins. We have observed an unexpected decrease in chaperone protein level in the β-cell model INS-1E after exposure to the ER stress inducing agent thapsigargin. As these cells are a commonly used model for primary β-cells and has been shown to be vulnerable to ER stress, we hypothesize these cells are incapable of mounting a chaperone defense upon activation of ER stress. To investigate the chaperone expression during an ER stress response, induced by thapsigargin in INS-1E cells, we used quantitative mass spectrometry based proteomics. The results displayed a decrease of GRP78/BiP, PDIA3 and PDIA6. Decrease of GRP78/BiP was verified by Western blot and occurred in parallel with enhanced levels of p-eIF2α and CHOP. In contrast to INS-1E cells, GRP78/BiP was not decreased in MIN6 cell or rat and mouse islets after thapsigargin exposure. Investigation of the decreased protein levels of GRP78/BiP indicates that this is not a consequence of reduced mRNA expression. Rather the reduction results from the combined effect of reduced protein synthesis and enhanced proteosomal degradation and possibly also degradation via autophagy. Induction of ER stress with thapsigargin leads to lower protein levels of GRP78/BiP, PDIA3 and PDIA6 in INS-1E cells which may contribute to the susceptibility of ER stress in this β-cell model.  相似文献   

2.
Chronic exposure to elevated concentration of free fatty acids (FFA) has been verified to induce endoplasmic reticulum (ER) stress, which leads to pancreatic β-cell apoptosis. As one of the medium and long chain FFA receptors, GPR40 is highly expressed in pancreatic β cells, mediates both acute and chronic effects of FFA on β-cell function, but the role of GPR40 in FFA-induced β-cell apoptosis remains unclear. In this study, we investigated the possible effects of GPR40 in palmitate-induced MIN6 β-cell apoptosis, and found that DC260126, a novel small molecular antagonist of GPR40, could protect MIN6 β cells from palmitate-induced ER stress and apoptosis. Similar results were observed in GPR40-deficient MIN6 cells, indicating that palmitate-induced β-cell apoptosis is at least partially dependent on ER stress pathway via GRP40.  相似文献   

3.
Induction of endoplasmic reticulum (ER) stress and apoptosis by elevated exogenous saturated fatty acids (FAs) plays a role in the pathogenesis of β-cell dysfunction and loss of islet mass in type 2 diabetes. Regulation of monounsaturated FA (MUFA) synthesis through FA desaturases and elongases may alter the susceptibility of β-cells to saturated FA-induced ER stress and apoptosis. Herein, stearoyl-CoA desaturase (SCD)1 and SCD2 mRNA expression were shown to be induced in islets from prediabetic hyperinsulinemic Zucker diabetic fatty (ZDF) rats, whereas SCD1, SCD2, and fatty acid elongase 6 (Elovl6) mRNA levels were markedly reduced in diabetic ZDF rat islets. Knockdown of SCD in INS-1 β-cells decreased desaturation of palmitate to MUFA, lowered FA partitioning into complex neutral lipids, and increased palmitate-induced ER stress and apoptosis. Overexpression of SCD2 increased desaturation of palmitate to MUFA and attenuated palmitate-induced ER stress and apoptosis. Knockdown of Elovl6 limited palmitate elongation to stearate, increasing palmitoleate production and attenuating palmitate-induced ER stress and apoptosis, whereas overexpression of Elovl6 increased palmitate elongation to stearate and palmitate-induced ER stress and apoptosis. Overall, these data support the hypothesis that enhanced MUFA synthesis via upregulation of SCD2 activity can protect β-cells from elevated saturated FAs, as occurs in prediabetic states. Overt type 2 diabetes is associated with diminished islet expression of SCD and Elovl6, and this can disrupt desaturation of saturated FAs to MUFAs, rendering β-cells more susceptible to saturated FA-induced ER stress and apoptosis.  相似文献   

4.
5.
Elevated extracellular lipids, such as the free fatty acid palmitate, can induce pancreatic beta cell endoplasmic reticulum (ER) stress and apoptosis, thereby contributing to the initiation and progression of type 2 diabetes. ATP-citrate lyase (ACLY), a key enzyme in cellular lipid production, was identified as a palmitate target in a proteomic screen. We investigated the effects of palmitate on ACLY activity and phosphorylation and its role in beta cell ER stress and apoptosis. We demonstrated that treatment of MIN6 cells, mouse islets and human islets with palmitate reduced ACLY protein levels. These in vitro results were validated by our finding that islets from high fat-fed mice had a significant decrease in ACLY, similar to that previously observed in type 2 diabetic human islets. Palmitate decreased intracellular acetyl-CoA levels to a similar degree as the ACLY inhibitor, SB-204990, suggesting a reduction in ACLY activity. ACLY inhibitors alone were sufficient to induce CCAAT/enhancer-binding protein homologues protein (CHOP)-dependent ER stress and caspase-3-dependent apoptosis. Similarly, even modest shRNA-mediated knockdown of ACLY caused a significant increase in beta cell apoptosis and ER stress. The effects of chemical ACLY inhibition and palmitate were non-additive and therefore potentially mediated by a common mechanism. Indeed, overexpression of ACLY prevented palmitate-induced beta cell death. These observations provide new evidence that ACLY expression and activity can be suppressed by exogenous lipids and demonstrate a critical role for ACLY in pancreatic beta cell survival. These findings add to the emerging body of evidence linking beta cell metabolism with programmed cell death.  相似文献   

6.
Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic β cells and what role they play in palmitate-induced β cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 β cells. This increase was associated with an increase in sphingosine kinase 1 (SphK1) mRNA and protein levels. Over-expression of SphK1 in INS-1 cells potentiated palmitate-induced accumulation of dihydrosphingosine-1-phosphate. N,N-dimethyl-sphingosine, a potent inhibitor of SphK, potentiated β-cell apoptosis induced by palmitate whereas over-expression of SphK1 significantly reduced apoptosis induced by palmitate with high glucose. Endoplasmic reticulum (ER)-targeted SphK1 also partially inhibited apoptosis induced by palmitate. Inhibition of INS-1 apoptosis by over-expressed SphK1 was independent of sphingosine-1-phosphate receptors but was associated with a decreased formation of pro-apoptotic ceramides induced by gluco-lipotoxicity. Moreover, over-expression of SphK1 counteracted the defect in the ER-to-Golgi transport of proteins that contribute to the ceramide-dependent ER stress observed during gluco-lipotoxicity. In conclusion, our results suggest that activation of palmitate-induced SphK1-mediated sphingoid base-1-phosphate formation in the ER of β cells plays a protective role against palmitate-induced ceramide-dependent apoptotic β cell death.  相似文献   

7.
Sigma-1 receptor (Sig-1R) is located in the endoplasmic reticulum (ER) and clustered on the mitochondria related endoplasmic membranes, which are involved in the regulation of nervous system disease. Here, we designed Sig-1R silence MIN6 cells and studied the influence of Sig-1R silence on beta cells. We showed Sig-1R inactivation in MIN6 cells could not only decrease cell proliferation but also inhibit cell cycle, and this inhibitory effect on cell cycle might be achieved by regulating the FoxM1/Plk1/Cenpa pathway. Moreover, Sig-1R deficiency increased MIN6 cells sensitivity to lipotoxicity, exaggerated palmitate (PA)-induced apoptosis, and impaired insulin secretion. On the other hand, ER chaperone GRP78 and ER proapoptotic molecules CHOP increased in Sig-1R knockdown MIN6 cells. The ATP level decreased and reactive oxygen species (ROS) increased in this kind of cells. Furthermore not only GRP78 and CHOP levels, but also ATP and ROS levels changed more in Sig-1R silence cells after cultured with PA. Therefore, Sig-1R deficiency exaggerated PA induced beta cells apoptosis by aggravating ER stress and mitochondrial dysfunction. Together, our study showed that Sig-1R might influence the proliferation, apoptosis, and function of beta cells.  相似文献   

8.
目的研究微粒体甘油三酯转移蛋白MTP在脂肪酸诱导的胰岛B细胞凋亡过程中,转录水平受FoxO1调控的情况。方法脂肪酸处理胰岛8细胞系MIN6细胞,MTF和Hoechst染色检测细胞活力和凋亡情况;ReahimePCR检测MTP相对表达量;染色质免疫共沉淀技术检验FoxO1与肘即启动子区的结合情况;荧光素酶报告基因系统检测Fox01对MTP的转录调控情况。结果脂肪酸处理引起MIN6细胞活力下降、凋亡增加,使MIN6细胞中MTP mRNA水平上升;糖尿病模型小鼠胰岛中MTPmRNA水平上升;转录因子FoxO1的过表达可上调MTP的转录活性;ChIP—PCR结果显示FoxO1能与MZP的启动子区相结合。结论MTP在脂肪酸诱导胰岛B细胞凋亡的过程中,作为转录因子FoxO1的下游靶基因,转录水平受到FoxO1的调控。  相似文献   

9.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

10.
Lei X  Zhang S  Bohrer A  Bao S  Song H  Ramanadham S 《Biochemistry》2007,46(35):10170-10185
Beta-cell mass is regulated by a balance between beta-cell growth and beta-cell death, due to apoptosis. We previously reported that apoptosis of INS-1 insulinoma cells due to thapsigargin-induced ER stress was suppressed by inhibition of the group VIA Ca2+-independent phospholipase A2 (iPLA2beta), associated with an increased level of ceramide generation, and that the effects of ER stress were amplified in INS-1 cells in which iPLA2beta was overexpressed (OE INS-1 cells). These findings suggested that iPLA2beta and ceramides participate in ER stress-induced INS-1 cell apoptosis. Here, we address this possibility and also the source of the ceramides by examining the effects of ER stress in empty vector (V)-transfected and iPLA2beta-OE INS-1 cells using apoptosis assays and immunoblotting, quantitative PCR, and mass spectrometry analyses. ER stress induced expression of ER stress factors GRP78 and CHOP, cleavage of apoptotic factor PARP, and apoptosis in V and OE INS-1 cells. Accumulation of ceramide during ER stress was not associated with changes in mRNA levels of serine palmitoyltransferase (SPT), the rate-limiting enzyme in de novo synthesis of ceramides, but both message and protein levels of neutral sphingomyelinase (NSMase), which hydrolyzes sphingomyelins to generate ceramides, were temporally increased in the INS-1 cells. The increases in the level of NSMase expression in the ER-stressed INS-1 cells were associated with corresponding temporal elevations in ER-associated iPLA2beta protein and catalytic activity. Pretreatment with BEL inactivated iPLA2beta and prevented induction of NSMase message and protein in ER-stressed INS-1 cells. Relative to that in V INS-1 cells, the effects of ER stress were accelerated and/or amplified in the OE INS-1 cells. However, inhibition of iPLA2beta or NSMase (chemically or with siRNA) suppressed induction of NSMase message, ceramide generation, sphingomyelin hydrolysis, and apoptosis in both V and OE INS-1 cells during ER stress. In contrast, inhibition of SPT did not suppress ceramide generation or apoptosis in either V or OE INS-1 cells. These findings indicate that iPLA2beta activation participates in ER stress-induced INS-1 cell apoptosis by promoting ceramide generation via NSMase-catalyzed hydrolysis of sphingomyelins, raising the possibility that this pathway contributes to beta-cell apoptosis due to ER stress.  相似文献   

11.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

12.
AimsObesity is associated with hypertriglyceridemia and elevated circulating free fatty acids (FFA), resulting in endothelial dysfunction. Endoplasmic reticulum (ER) stress has been implicated in many of these processes. To determine if ER stress participates in palmitate-induced apoptosis, we investigated the effects of diet-induced obesity and palmitate on mouse aortic endothelial cells (MAEC) in vivo and in vitro.Main methodsMale C57BL/6 mice were fed standard chow diets (SCD) or high-calorie and high-cholesterol diets (HCD) for 3 months. Insulin resistance was detected, and the serum, including proinflammatory indices and markers of endothelial function, was also analyzed. The ultrastructure and apoptosis of the endothelial cells in the thoracic aorta were observed. The primary MAEC were separated and treated with palmitate at different concentrations or different times respectively to observe any changes in cellular proliferation, intracellular reactive oxygen species (ROS) levels and apoptosis. Finally, the ER stress markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were analyzed.Key findingsHCD-fed obese mice became inflammation-activated and insulin-resistant. Swollen mitochondria, expanded ER and apoptosis in the endothelial cells of the thoracic aorta were observed in HCD-fed mice. Palmitate inhibited cell proliferation, increased production of ROS and induced apoptosis in MAEC. CHOP was overexpressed and shifted into the nucleus (mainly), while the expression of GRP78 was upregulated in the palmitate-treated MAEC.SignificanceOur results indicate that diet-induced obesity results in endothelial dysfunction in vivo, and that oxidative and ER stress may be involved in apoptosis induced by the palmitate in vitro.  相似文献   

13.
We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ, ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.  相似文献   

14.
Murine regenerating (mReg) genes have been implicated in preserving islet cell biology. Expanding on our previous work showing that overexpression of mReg2 protects MIN6 insulinoma cells against streptozotocin-induced apoptosis, we now demonstrate that mReg2 induces glucose-regulated peptide 78 (GRP78) expression via the Akt–mTORC1 axis and protects MIN6 cells against ER stress induced by thapsigargin and glucolipotoxicity. Activation of mTORC1 activity results from both mReg2-induced increased mTOR phosphorylation as well as increased expression of Raptor and GβL. Inhibition of Akt and mTORC1 blunted the ability of mReg2 to induce GRP78 and attenuate unfolded protein response (UPR). Knockdown of GRP78 sensitized the cells overexpressing mReg2 to UPR without affecting its ability to activate Akt–mTORC1 signaling. Induced expression of mReg2 may protect insulin producing cells from ER stress in diabetes.  相似文献   

15.
Lee JW  Kim WH  Yeo J  Jung MH 《Molecules and cells》2010,30(6):545-549
Mitochondrial dysfunction induces apoptosis of pancreatic β-cells and leads to type 2 diabetes, but the mechanism involved in this process remains unclear. Chronic endoplasmic reticulum (ER) stress plays a role in the apoptosis of pancreatic β-cells; therefore, in current study, we investigated the implication of ER stress in mitochondrial dysfunction-induced β-cells apoptosis. Metabolic stress induced by antimycin or oligomycin was used to impair mitochondrial function in MIN6N8 cells, which are mouse pancreatic β-cells. Impaired mitochondria dysfunction increased ER stress proteins such as p-eIF2α, GRP78 and GRP 94, as well as ER stress-associated apoptotic factor, CHOP, and activated JNK. AMP-activated protein kinase (AMPK) was also activated under mitochondria dysfunction by metabolic stress. However, the inhibition of AMPK by treatment with compound C, inhibitor of AMPK, and overexpression of mutant dominant negative AMPK (AMPKK45R) blocked the induction of ER stress, which was consist-ent with the decreased β-cell apoptosis and increase of insulin content. Furthermore, mitochondrial dysfunction increased the expression of the inducible nitric oxide synthase (iNOS) gene and the production of nitric oxide (NO), but NO production was prevented by compound C and mutant dominant negative AMPK (AMPK-K45R). Moreover, treatment with 1400W, which is an inhibitor of iNOS, prevented ER stress and apoptosis induced by mitochondrial dysfunction. Treatment of MIN6N8 cells with lipid mixture, physiological conditions of impaired mitochondria function, activated AMPK, increased NO production and induced ER stress. Collectively, these data demonstrate that mitochondrial dysfunction activates AMPK, which induces ER stress via NO production, resulting in pancreatic β-cells apoptosis.  相似文献   

16.

Aims/Hypothesis

To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.

Methods

Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6) and rat (INS-1E) beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1). Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS). Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.

Results

24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05). Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05) and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein). Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05) and reactive oxygen species increased by more than twofold (P<0.05) following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.

Conclusions/Interpretation

Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.  相似文献   

17.
18.
Abnormally high levels of circulating free fatty acids can lead to pancreatic islet β-cell dysfunction and apoptosis, contributing to β-cell failure in Type 2 diabetes. The NAD+-dependent protein deacetylase Sirtuin-3 (SIRT3) has been implicated in Type 2 diabetes. In this study, we tested whether SIRT3 overexpression affects palmitate-induced β-cell dysfunction in cells of line NIT1, which are derived from mouse pancreatic β-cells. Two different lengths of SIRT3 were overexpressed: full length SIRT3 (SIRT3LF), which was preferentially targeted to mitochondria and partially to the nucleus, and its N-terminal truncated form (SIRT3SF), which was located in the nucleus and cytoplasm. Overexpression of SIRT3LF and SIRT3SF using an adenoviral system alleviated palmitate-induced lipotoxicity such as reduction of cell viability and mitogen-activated protein kinase (MAPK) activation. Chronic exposure to low concentrations of palmitate suppressed glucose-stimulated insulin secretion, but the suppression was effectively reversed by overexpression of SIRT3LF or SIRT3SF. The mRNA levels of the endoplasmic reticulum (ER) stress responsive genes ATF4, GRP94 and FKBP11 were increased by palmitate treatment, but the increases were completely inhibited by SIRT3LF overexpression and less effectively inhibited by SIRT3SF overexpression. This result suggests that overexpression of SIRT3 inhibits induction of ER stress by palmitate. Collectively, we conclude that overexpression of SIRT3 alleviates palmitate-induced β-cell dysfunction.  相似文献   

19.
20.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号