首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing awareness of microbial threat has rekindled interest in the great potential of vaccines for controlling infectious diseases. The fact that diseases caused by intracellular pathogens cannot be overcome by chemotherapy alone has increased our interest in the generation of highly efficacious novel vaccines. Vaccines have proven their efficacy, as the immunoprotection they induce appears to be mediated by long-lived humoral immune responses. However, there are no consistently effective vaccines available against diseases such as tuberculosis and HIV, and other infections caused by intracellular pathogens, which are predominantly controlled by T lymphocytes. This review describes the T-cell populations and the type of immunity that should be activated by successful DNA vaccines against intracellular pathogens. It further discusses the parameters that need to be fulfilled by protective T-cell Ag. We then discuss future approaches for DNA vaccination against diseases in which cell-mediated immune responses are essential for providing protection.  相似文献   

2.
3.
4.
Thomas S  Popov VL  Walker DH 《PloS one》2010,5(12):e15775

Background

The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the causative agent of human monocytotropic ehrlichiosis. Ehrlichia muris and Ixodes ovatus Ehrlichia (IOE) are agents of mouse models of ehrlichiosis. The mechanism by which Ehrlichia are transported from an infected host cell to a non-infected cell has not been demonstrated.

Methodology/Principal Findings

Using fluorescence microscopy and transmission and scanning electron microscopy, we demonstrated that Ehrlichia was transported through the filopodia of macrophages during early stages of infection. If host cells were not present in the vicinity of an Ehrlichia-infected cell, the leading edge of the filopodium formed a fan-shaped structure filled with the pathogen. Formation of filopodia in the host macrophages was inhibited by cytochalasin D and ehrlichial transport were prevented due to the absence of filopodia formation. At late stages of infection the host cell membrane was ruptured, and the bacteria were released.

Conclusions/Significance

Ehrlichia are transported through the host cell filopodium during initial stages of infection, but are released by host cell membrane rupture during later stages of infection.  相似文献   

5.
Actin-based motility of intracellular pathogens   总被引:4,自引:0,他引:4  
The actin cytoskeleton is harnessed by several pathogenic bacteria that are capable of entering into non-phagocytic cells, the so-called 'invasive bacteria'. Among them, a few also exploit the host actin cytoskeleton to move intra- and inter-cellularly. Our knowledge of the basic mechanisms underlying actin-based motility has dramatically increased and the list of bacteria that are able to move in this way is also increasing including not only Listeria, Shigella and Rickettsia species but also Mycobacterium marinum and Burkholderia pseudomallei. In all cases the central player is the Arp2/3 complex. Vaccinia virus moves intracellularly on microtubules and just after budding, triggers actin polymerization and the formation of protrusions similar to that of adherent enteropathogenic Escherichia coli, that involve the Arp2/3 complex and facilitate its inter-cellular spread.  相似文献   

6.
7.
8.
Summary The threat caused by intracellular pathogens increases as conventional drag treatments are less and less effective against a wide range of microorganisms. Understanding the molecular mechanisms used by intracellular pathogens to avoid killing and degradation in their host cells is likely to point at new ways to threat infectious diseases. We discuss some of the strategies used by various microorganisms to avoid killing and degradation in phagolysosomes. Interestingly, it appears that microbes have a lot to teach us about the cell biology and molecular mechanisms of organelle sorting in macrophages.  相似文献   

9.
10.
11.
The identification of bacterial genes regulated in response to the intracellular environment is crucial to the understanding of host-pathogen interactions. Several techniques have been developed to identify and characterize bacterial genes that are induced during the intracellular infection and, potentially, may play a role in pathogenesis. This review discusses the strategies that have been utilized to examine differential gene expression by bacterial pathogens during the intracellular infection. Furthermore, a number of the differentially expressed genes are described.  相似文献   

12.
Actin-based motility of intracellular microbial pathogens.   总被引:3,自引:0,他引:3  
M B Goldberg 《Microbiology and molecular biology reviews》2001,65(4):595-626, table of contents
A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review.  相似文献   

13.
Being an intracellular pathogen demands being able to invade a host cell, to circumvent the host immune response and to survive in the intracellular environment. Pore-forming proteins are among the innumerable tools used by intracellular microorganisms to achieve these goals. Remarkably, this seems to be a multipurpose group of proteins that can act in several ways. Making channels may signify entering into host cells, inhibiting phagocytosis, escaping phagosomes or promoting pathogen dissemination. In certain cases, pore-forming proteins are double-edged tools and may benefit the host by eliminating infected cells and/or inducing inflammation.  相似文献   

14.
MHC class II molecules are thought to present peptides derived from extracellular proteins to CD4+ T cells, which are important mediators of adaptive immunity to infections. In contrast, autophagy delivers constitutively cytosolic material for lysosomal degradation and has so far been recognized as an efficient mechanism of innate immunity against bacteria and viruses. Recent studies, however, link these two pathways and suggest that intracellular cytosolic and nuclear antigens are processed for MHC class II presentation after autophagy.  相似文献   

15.
Phosphoinositides are short-lived lipids, whose production at specific membrane locations in the cell enables the tightly controlled recruitment or activation of diverse cellular effectors involved in processes such as cell motility or phagocytosis. Bacterial pathogens have evolved molecular mechanisms to subvert phosphoinositide metabolism in host cells, promoting (or blocking) their internalization into target tissues, and/or modifying the maturation fate of their proliferating compartments within the intracellular environment.  相似文献   

16.
17.
18.
Hijacking of eukaryotic functions by intracellular bacterial pathogens.   总被引:4,自引:0,他引:4  
Intracellular bacterial pathogens have evolved as a group of microorganisms endowed with weapons to hijack many biological processes of eukaryotic cells. This review discusses how these pathogens perturb diverse host cell functions, such as cytoskeleton dynamics and organelle vesicular trafficking. Alteration of the cytoskeleton is discussed in the context of the bacterial entry process (invasion), which occurs either by activation of membrane-located host receptors (zipper mechanism) or by injection of bacterial proteins into the host cell cytosol (trigger mechanism). In addition, the two major types of intracellular lifestyles, cytosolic versus intravacuolar (phagosomal), which are the consequence of alterations in the phagosome-lysosome maturation route, are compared. Specific examples illustrating known mechanisms of mimicry or hijacking of the host target are provided. Finally, recent advances in phagosome proteomics and genome expression in intracellular bacteria are described. These new technologies are yielding valuable clues as to how these specialized bacterial pathogens manipulate the mammalian host cell.  相似文献   

19.
20.
Neutrophils are not simply scavenging phagocytes that clear extracellular spaces of rapidly proliferating microbes; they are also active in the control of infections by intracellular pathogens. Several mechanisms for nonphagocytic roles of neutrophils in protective immunity have been put forth over the years but further evidence has recently been accumulating at an increasing pace. In this review, I present the evidence that suggests neutrophils are involved in pathogen shuttling into the lymphoid tissues, in antigen presentation, and in early T cell recruitment and initiation of granuloma organization. Also, a clearer view on the antimicrobial molecules that can be acquired by macrophages to enhance their antimicrobial activity is now emerging. Finally, neutrophils can adversely affect immunity against certain parasites by causing immune deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号