首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have shown that mesenchymal stem cells (MSCs) have low immunogenicity and immune regulation. Human umbilical cord Wharton’s jelly provides a new source for MSCs that are highly proliferative and have multi-differentiation potential. To investigate immunomodulatory effects of human Wharton’s jelly cells (WJCs) on lymphocytes, we successfully isolated MSCs from human umbilical cord Wharton’s jelly. WJCs expressed MSC markers but low levels of human leukocyte antigen (HLA)-ABC and no HLA-DR. These results indicate that WJCs have low immunogenicity. Both WJCs and their culture supernatant could inhibit the proliferation of phytohemagglutinin-stimulated human peripheral blood lymphocytes and mouse splenocytes. Additionally, WJCs suppressed secretion of transforming growth factor-β1 and interferon-γ by human peripheral blood lymphocytes. We conclude that the immunomodulatory effect of WJCs may be related to direct cell contact and inhibition of cytokine secretion by human peripheral blood lymphocytes.  相似文献   

2.
3.
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly‐derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all‐trans retinoic acid, testosterone and testicular‐cell‐conditioned medium prepared from newborn male mouse testes. HUMSCs formed “tadpole‐like” cells after induction with different reagents and showed both mRNA and protein expression of germ‐cell‐specific markers Oct4 (POUF5), Ckit, CD49f (α6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage. J. Cell. Biochem. 109: 747–754, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Yang CC  Shih YH  Ko MH  Hsu SY  Cheng H  Fu YS 《PloS one》2008,3(10):e3336

Background

Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton''s jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury.

Methodology/Principal Findings

We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair.

Conclusions/Significance

Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.  相似文献   

6.
Numerous papers have reported that mesenchymal stem cells (MSCs) can be isolated from various sources such as bone marrow, adipose tissue and others. Nonetheless it is an open question whether MSCs isolated from different sources represent a single cell lineage or if cells residing in different organs are separate members of a family of MSCs. Subendothelial tissue of the umbilical cord vein has been shown to be a promising source of MSCs. The aim of this study was to isolate and characterize cells derived from the subendothelial layer of umbilical cord veins as regards their clonogenicity and differentiation potential. The results from these experiments show that cells isolated from the umbilical cord vein displayed fibroblast-like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were negative for the hematopoietic line markers HLA-DR and CD34 but were positive for CD29, CD90 and CD73. The isolated cells were also positive for survivin, Bcl-2, vimentin and endoglin, as confirmed by RT-PCR and immunofluorescence. These cells can be induced to differentiate into osteogenic and adipogenic cells, but a new finding is that these cells can be induced to differentiate into endothelial cells expressing CD31, vWF and KDR-2, and also form vessel-like structures in Matrigel. The differentiated cells stopped expressing survivin, thus showing a diminished proliferative potential. It can be assumed that the subendothelial layer of the umbilical cord vein contains a population of cells with the overall characteristics of MSCs, with the additional capability to transform into endothelial cells.  相似文献   

7.
Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.  相似文献   

8.
Stem cells of fetal origin lie between embryonic and adult stem cells in terms of potentiality. Because of the ethical controversy surrounding embryonic stem cells and the relatively inferior quality of adult stem cells, the use of fetal stem cells would be an attractive option in future therapeutic applications. Here, we have investigated primitive characteristics of human umbilical-cord-derived fetal mesenchymal stem cells (UC fMSCs) during extensive expansion. We have successfully isolated and cultured UC fMSCs from all UC samples, but with two early fungal contaminations. UC fMSCs proliferated without significant evidence of morphological changes, and the average cumulative population-doubling level was over 25 for about 3 months. UC fMSCs showed the positive expression of several CD markers, known to be related to MSCs, including CD73 (SH-3, 4), CD90 (Thy-1), CD105 (SH-2), CD117 (c-kit), and CD166 (ALCAM). They demonstrated primitive properties throughout the expansion period: multilineage differentiation potentials examined by functional assays, a variety of pluripotent stem cell markers including Nanog, Oct-4, Sox-2, Rex-1, SSEA-3, SSEA-4, Tra-1–60, and Tra-1–81, minimal evidence of senescence as shown by β-galactosidase staining, and the consistent expression of telomerase activity. These results suggest that UC fMSCs have more primitive properties than adult MSCs, which might make them a useful source of MSCs for clinical applications. This work was supported by the Seoul R&BD Program (10548).  相似文献   

9.
《Tissue & cell》2016,48(5):533-543
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.  相似文献   

10.
一种大量快速分离脐带间充质干细胞的新方法   总被引:1,自引:0,他引:1  
目的:探讨体外快速大量分离脐带间充质干细胞的新方法。方法:采用复合胶原NB4、dispaseII、透明质酸酶三种酶消化3h,加入PBSA溶液稀释,离心获得脐带间充质干细胞,培养;用流式细胞仪对P3代细胞进行表面标记的鉴定,用化学诱导的方法使第3代细胞向脂肪、骨、软骨细胞分化,2~4周后,分别行oilred、Safranin'O和茜素红染色,倒置显微镜下观察诱导结果。结果:经3种酶消化和PBSA稀释,短时间内从脐带中获得了大量间充质干细胞;伴随着细胞的传代,形态逐渐均一,传至第3代,细胞的形态已基本相似;流式细胞仪鉴定,细胞强表达间充质细胞的特异性标记CD90,CD73,CD105,而不表达造血系或内皮系细胞的标记CD45、CD14、CD11、CD34、CD19,也不表达主要组织相容性抗原HLA-DR;向脂肪细胞诱导后第4周,oilred染色见细胞内大量红染的脂滴;向软骨细胞诱导后第4周,Safranin'O染色见多数切片呈阳性,细胞团块中存在大量软骨特异性的陷窝样结构;向骨细胞诱导后第4周,茜素红染色发现肉眼可见的广泛散在的红色阳性钙结节。结论:本研究所采用的3种酶消化结合PBSA稀释的方法可以快速获得脐带间...  相似文献   

11.
脊髓损伤(SCI)由于复杂病理生理和神经修复再生困难,至今仍旧是难以攻克的医学难题,而干细胞因其神经再生和神经保护特性被认为是治疗SCI最有希望的方法。其中人脐带间充质干细胞(HUC-MSCs)近年培养分化方法不断改进、神经修复机制初步阐明,联合移植等综合治疗方案也不断实践,使HUC-MSCs移植治疗效果提高。另外关于HUC-MSCs治疗SCI的临床试验逐渐开展,术后患者神经功能恢复改善且无严重并发症出现,表明干细胞移植应用于人体是安全有效的。本文就HUC-MSCs治疗SCI的研究状况及进展进行综述。  相似文献   

12.
目的探讨人脐带间充质干细胞(MSCs)源性细胞外囊泡Oct-4 mRNA对受损的肾小管上皮细胞修复的作用及相关机制。 方法将培养的缺氧损伤肾小管上皮细胞置于含有人脐带MSCs细胞外囊泡及不同对照培养液的培养腔室玻片上孵育48?h,应用BrdU及TUNEL染色,检测各组细胞增殖或凋亡情况。将急性肾损伤模型小鼠分为4组:空白组、EVs组、Oct-4过表达组、Oct-4低敲组。并按照分组分别注射磷酸盐缓冲液(Vehicle),人脐带MSCs细胞外囊泡(EVs),过表达Oct-4基因的人脐带MSCs细胞外囊泡(EVs?+?Oct-4)及敲除Oct-4基因的人脐带MSCs外囊泡(EVs-Oct-4),并在注射48?h及2周后采血测肌酐(Crea)及尿素氮(BUN),了解肾功能变化;对各组上述处理后的肾组织应用TUNEL与增殖细胞核抗原表达量检测各组肾脏细胞凋亡与增殖情况;通过Masson染色检测了各组肾脏纤维化程度;通过PCR探索肾损伤后肾组织细胞Snail基因的表达变化。数据分析采用方差分析和SNK-q检验。 结果EVs?+ Oct-4处理缺氧的肾小管上皮细胞48?h后,TUNEL染色显示具有最少的凋亡细胞数(0~1)/?HPF,BrdU显示有最多的增殖细胞(7±2)/HPF。EVs,EV-Oct-4以及Vehicle对体外缺氧肾小管上皮细胞的上述作用依次减弱(P?相似文献   

13.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

14.
15.
Liu G  Ye X  Zhu Y  Li Y  Sun J  Cui L  Cao Y 《Cryobiology》2011,63(2):125-128
The osteogenic capacity of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) has been demonstrated both in vitro and in vivo. Therefore, cell labeling and storage are becoming necessary for researching the potential therapeutic use of UCB-MSCs for bone tissue engineering. The aim of this study was to determine the effect of cryopreservation on the osteogenic differentiation of green fluorescent protein (GFP)-marked UCB-MSCs in vitro. MSCs were isolated from full-term human UCB, expanded, transfected with the GFP gene, and then cryopreserved in liquid nitrogen for 4 weeks. After thawing, cell surface antigen markers and osteogenic potential were analyzed, and the luminescence of these cells was observed by fluorescence microscopy. The results demonstrate that cryopreservation has no effect on the cell phenotype, GFP expression or osteogenic differentiation of UCB-MSCs, showing that cryopreserved GFP-labeled UCB-MSCs might be applied for bone tissue engineering.  相似文献   

16.
Proteomic profiling of human stem cells derived from umbilical cord blood   总被引:2,自引:0,他引:2  
CD34+ preparations from five different umbilical cord samples were compared with respect to their proteome profile using 2-D gel electrophoresis. Fifty-two protein spots were found to match in all preparations referring to the high heterogeneity of such samples indicating a not fully developed (or instable) proteome of stem cells. All matching spots were subjected to in-gel digestion and nano-LC-MS/MS sequence analysis, from which 22 proteins were unambiguously identified.  相似文献   

17.
Human mesenchymal stem cells isolated from the umbilical cord   总被引:16,自引:0,他引:16  
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. In this study human MSCs were successfully isolated from the umbilical cords. The research characteristics of these cells, e.g., morphologic appearance, surface antigens, growth curve, cytogenetic features, cell cycle, differentiation potential and gene expression were investigated. After 2weeks of incubation, fibroblast-like cells appeared to be dominant. During the second passage the cells presented a homogeneous population of spindle fibroblast-like cells. After more than 4months (approximately 26 passages), the cells continued to retain their characteristics. Flow cytometry analysis revealed that CD29, CD44, CD95, CD105 and HLA-I were expressed on the cell surface, but there was no expression of hematopoietic lineage markers, such as CD34, CD38, CD71 and HLA-DR. Chromosomal analysis showed the cells kept a normal karyotype. The cell cycle at the third passage showed the percentage of G(0)/G(1), G(2)/M and S phase were 88.86%, 5.69% and 5.45%, respectively. The assays in vitro demonstrated the cells exhibited multi-potential differentiation into osteogenic and adipogenic cells. Both BMI-1 and nucleostemin genes, expressed in adult MSCs from bone marrow, were also expressed in umbilical cord MSCs. Here we show that umbilical cords may be a novel alternative source of human MSCs for experimental and clinical applications.  相似文献   

18.
Mesenchymal stem cells (MSCs) have been widely used in allogeneic stem cell transplantation. We compared im- munologic and hematopoietic characteristics of MSCs derived from whole human umbilical cord (UC), as well as from different sections of UCs, including the amniotic membrane (AM), Wharton's jelly (WJ), and umbilical vessel (UV). Cell phenotypes were examined by flow cytometry. Lymphocyte transformation test and mixed lymphocyte reaction were performed to evaluate the immuno-modulatory activity of MSCs derived from UCs. The mRNA expression of cytokines was detected by real- time polymerase chain reaction. Hematopoietic function was studied by co-culturing MSCs with CD34+ cells iso- lated from cord blood. Our results showed that MSCs separated from these four different sections including UC, W J, UV, and AM had similar biological characteristics. All of the MSCs had multi-lineage differentiation ability and were able to differentiate into osteoblasts, adipocytes, and chondrocytes. The MSCs also inhibited the proliferation of allogeneic T cells in a dose-dependent manner. The relative mRNA expression of cytokines was examined, and the results showed that UCMSCs had higher interleukin-6 (IL6), ILll, stem cell factor, and FLT3 expression than MSCs derived from specific sections of UCs. CD34+ cells had high propagation efficiencies when co-cultured with MSCs derived from different sections of UCs, among which UCMSCs are the most efficient feeding layer. Our study demonstrated that MSCs could be isolated from whole UC or specific sections of UC with similar immuno- modulation and hematopoiesis supporting characteristics.  相似文献   

19.

Background

Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants.

Methodology/Principal Findings

In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3–4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach.

Conclusions

h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.  相似文献   

20.
Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号