首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies of offspring size focus on differences in maternal investment that arise from ecological factors such as predation or competition. Classic theory predicts that these ecological factors will select for an optimal offspring size, and therefore that variation in a given environment will be minimized. Yet recent evidence suggests maternal traits such as size or age could also drive meaningful variation in offspring size. The generality of this pattern is unclear, as some studies suggest that it may represent non-adaptive variation or be an artifact of temporal or spatial differences in maternal environments. To clarify this pattern, we asked how maternal size, age and condition are related to each other in several populations of the swordtail Xiphophorus birchmanni. We then determined how these traits are related to offspring size, and whether they could resolve unexplained intra-population variation in this trait. We found that female size, age, and condition are correlated within populations; at some of these sites, older, larger females produce larger offspring than do younger females. The pattern was robust to differences among most, but not all, sites. Our results document a pattern that is consistent with recent theory predicting adaptive age- and size-dependence in maternal investment. Further work is needed to rule out non-adaptive explanations for this variation. Our results suggest that female size and age could play an under-appreciated role in population growth and evolution.  相似文献   

2.
Räsänen K  Laurila A  Merilä J 《Oecologia》2005,142(4):546-553
Geographic variation in maternal investment in offspring size can be adaptive if differences in investment translate into improved offspring performance in the given environments. We compared two moor frog, Rana arvalis, populations in the laboratory to test the hypothesis that investment in large eggs in populations originating from stressful (acid) environments improves offspring performance when reared in stressful (acid) conditions. We found that large initial size (hatchling mass) had moderate to strong, environment-dependent positive effects on larval and metamorphic traits in the acidic origin population, but only weak effects in the neutral origin population. Our results suggest that interactions between environmental conditions and initial size can be important determinants of individual performance, and that investment in large eggs is adaptive in acid environments. These findings emphasize the role of maternal effects as adaptations to environmental stress.  相似文献   

3.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

4.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

5.
6.
Egg size is considered to be a major maternal effect for offspring in oviparous organisms. It has profound consequences on fitness, and differences in egg size are viewed as plastic responses to environmental variability. However, it is difficult to identify the effect of egg size per se because egg size can covary with genetic features of the mother and with other nongenetic factors. We analysed the relationship between offspring starting size (i.e. a proxy of egg size) and larval survival in the frog Rana latastei . We analysed this relationship: (1) among five populations at different altitudes; (2) among clutches laid from different females; and (3) among siblings within clutches, to evaluate the effect of starting size. We observed differences among populations for offspring size, but starting size was not related to altitude or genetic diversity. Mortality was higher in populations and families with small average starting size; however, among siblings, the relationship between starting size and mortality was not verified. The relationship observed among clutches may therefore be caused by covariation between egg size and other effects. This suggests that the covariation between egg size and other effects can result in apparent relationships between egg size and fitness-related traits. Proximate and ultimate factors can cause the phenotypic variation of hatchlings in the wild, and key traits can be related to this variation, but the underlying causes require further investigation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 845–853.  相似文献   

7.
The spatial structure of four Lychnis flos-cuculi populations, varying in size and degree of isolation, was studied by comparing the fitness of offspring resulting from self-pollination and pollinations by neighbouring plants, plants within the same population, and plants from other populations. Selfed offspring had the lowest fitness of the four offspring groups. No significant difference was found between the performance of offspring from pollinations by neighbouring plants and offspring pollinated by plants further apart but within the same population. A lower fitness of offspring from pollinations between neighbours would be expected if these matings, on average, yielded inbred offspring which suffered from inbreeding depression. These results imply that either a tight neighbourhood structuring is not present, or that the inbreeding depression for offspring by neighbours is too low to detect, although these are inbred. Crossings between populations produced offspring with a significantly higher fitness than offspring sired within populations. There were no significant differences in response to inbreeding among the populations, and differences in mean fitness among populations had no clear relation to the population size or degree of isolation. A reduced fitness of small populations due to inbreeding depression or a less severe response to experimental inbreeding due to purging of deleterious alleles is therefore not supported by our results.  相似文献   

8.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

9.
Intraspecific variation in seed size may result from life-history constraints or environmental conditions experienced. This variation in seed size is likely to affect the early stage of invasion as seed size may contribute to the success or failure of population establishment. However, only a few studies have examined seed size variability and its causes and consequences for invaders so far. Using the invasive herb Lupinus polyphyllus, we estimated seed mass variation within and among 39 populations from two different geographic regions in a part of the invaded range. We empirically and experimentally evaluated the effect of seed number and environmental conditions (e.g. geographic region, habitat type, intraspecific competition) on seed mass, emergence and seedling performance. Seed mass varied threefold, being largest among individual plants within populations and smallest among populations. Variation in seed mass was neither related to seed number nor the environmental conditions examined, but led to differences in offspring performance, with emergence and seedling size increasing with seed mass. Larger L. polyphyllus seeds were better establishers than smaller seeds regardless of environmental conditions, indicating that the success of L. polyphyllus invasions is likely to depend positively on seed mass. Our results suggest that some plant species such as the invasive L. polyphyllus may not show an adaptive response in seed mass to resources or environmental conditions, which may partly explain their ability to colonise a range of different habitats.  相似文献   

10.
This study documents substantial variation in reproductive traits among populations of stream-dwelling brown trout ( Salmo trutta L.) at a very small geographic scale. Within two streams, we found a parallel pattern of variation, where females living above major waterfalls produced fewer and larger eggs than conspecifics from below the waterfalls. Four additional streams were represented with either a below-waterfall site ( n =2) or an above-waterfall site ( n =2). When these streams were included in the analyses, there was no consistent difference in reproductive traits between females from above- and below-waterfall sites. There was no significant difference in total reproductive investment among sites within streams, but considerable variation among streams. Female first-year growth rates was estimated from scales, and differed significantly among populations. Within streams, females from below waterfalls experienced higher first-year growth rates as compared to females from above the waterfalls. Within seven out of eight populations, egg size increased significantly with increasing female body length. Within three populations, we found evidence for a trade-off between offspring size and offspring number, as a negative association between fecundity and egg size independently of adult body size. Within three populations egg size decreased significantly with increasing maternal first-year growth, independently of adult body size. We suggest that the within-stream differences in offspring size/number strategies are influenced by population density and growth effects. Earlier, we have shown that population densities are consistently lower below the waterfalls in these streams. The Alpine bullhead ( Cottus poecilopus ) is found only below the waterfalls and could influence brown trout demography.  相似文献   

11.
Early survival is highly variable and strongly influences observed population growth rates in most vertebrate populations. One of the major potential drivers of survival variation among juveniles is body mass. Heavy juveniles are better fed and have greater body reserves, and are thus assumed to survive better than light individuals. In spite of this, some studies have failed to detect an influence of body mass on offspring survival, questioning whether offspring body mass does indeed consistently influence juvenile survival, or whether this occurs in particular species/environments. Furthermore, the causes for variation in offspring mass are poorly understood, although maternal mass has often been reported to play a crucial role. To understand why offspring differ in body mass, and how this influences juvenile survival, we performed phylogenetically corrected meta‐analyses of both the relationship between offspring body mass and offspring survival in birds and mammals and the relationship between maternal mass and offspring mass in mammals. We found strong support for an overall positive effect of offspring body mass on survival, with a more pronounced influence in mammals than in birds. An increase of one standard deviation of body mass increased the odds of offspring survival by 71% in mammals and by 44% in birds. A cost of being too fat in birds in terms of flight performance might explain why body mass is a less reliable predictor of offspring survival in birds. We then looked for moderators explaining the among‐study differences reported in the intensity of this relationship. Surprisingly, sex did not influence the intensity of the offspring mass–survival relationship and phylogeny only accounted for a small proportion of observed variation in the intensity of that relationship. Among the potential factors that might affect the relationship between mass and survival in juveniles, only environmental conditions was influential in mammals. Offspring survival was most strongly influenced by body mass in captive populations and wild populations in the absence of predation. We also found support for the expected positive effect of maternal mass on offspring mass in mammals (rpearson = 0.387). As body mass is a strong predictor of early survival, we expected heavier mothers to allocate more to their offspring, leading them to be heavier and so to have a higher survival. However, none of the potential factors we tested for variation in the maternal mass–offspring mass relationship had a detectable influence. Further studies should focus on linking these two relationships to determine whether a strong effect of offspring size on early survival is associated with a high correlation coefficient between maternal mass and offspring mass.  相似文献   

12.
Placental reproduction is widespread across vertebrate taxa, but little is known about its life-history correlates and putative adaptive value. We studied variation in life-history traits in two populations of the placental poeciliid fish Poeciliopsis prolifica to determine whether differences in post-fertilization maternal provisioning to embryos have a genetic basis and how food availability affects reproduction. Life histories were characterized for wild-caught females and for second-generation lab-born females raised under two levels of food availability. We found that the two populations did not differ significantly in the wild for any life-history traits except for the lipid dry weight in females and in embryos at an advanced stage of development. When environmental effects were experimentally controlled, however, populations exhibited significant differences in several traits, including the degree of maternal provisioning to embryos. Food availability significantly affected female size at first parturition, brood size and offspring dry weight at birth. Altogether, these results demonstrate that population differences in maternal provisioning and other life-history traits have a genetic basis and show a plastic response to food availability. We infer that phenotypic plasticity may mask population differences in the field. In addition, when comparing life-history patterns in these two populations with known patterns in placental and non-placental poeciliids, our results support the hypotheses that placentation is an adaptive reproductive strategy under high-resource conditions but that it may represent a cost under low-food conditions. Finally, our results highlight that age at maturity and reproductive allotment may be key life-history traits accompanying placental evolution.  相似文献   

13.
Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.  相似文献   

14.
Although information concerning variation among and within populations is essential to understanding an organism's life history, little is known of such variation in any species of scorpion. We show that reproductive investment by the scorpion Centruroides vittatus varied among three Texas populations during one reproductive season. Females from the Kickapoo population produced smaller offspring and larger litters than females from the Independence Creek or Decatur populations; this pattern remained when adjusting for among population variation in either female mass or total litter mass. Relative clutch mass (RCM) and within-litter variability in offspring mass (V*) did not differ among populations. Among-population variation may result from genetic differences or from phenotypically plastic responses to differing environments. Within populations, the interrelationships among reproductive variables were similar for Decatur and Independence Creek: females investing more in reproduction (measured by total litter mass, TLM) produced larger litters and larger offspring, and V* decreased with increased mean offspring mass (and with decreased litter size at Decatur). At Kickapoo, larger females produced larger litters and had larger TLM; females investing more in reproduction produced larger litters but not larger offspring. Within litter variability in offspring mass was not correlated with any reproductive variables in this latter population. These patterns may be explained by the fractional clutch hypothesis, the inability of females precisely to control investment among offspring or morphological constraints on reproduction.  相似文献   

15.
Willi Y  Van Buskirk J  Fischer M 《Genetics》2005,169(4):2255-2265
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic richness as a proxy for long-term population size, which was positively correlated with current population size. Crosses between plants of smaller populations were less likely to be compatible. Inbreeding load, assessed as the slope of the relationship between offspring performance and parental kinship coefficients, was not related to population size, suggesting that deleterious mutations had not been purged from small populations. Offspring from smaller populations were on average more inbred, so inbreeding depression in clonal fitness was higher in small populations. We estimated variation in drift load from the mean fitness of outbred offspring and found enhanced drift load affecting female fertility within small populations. We conclude that self-incompatibility systems do not necessarily prevent small populations from suffering from inbreeding depression and drift load and may exacerbate the challenge of finding suitable mates.  相似文献   

16.
Variation in fitness generated by differences in functional performance can often be traced to morphological variation among individuals within natural populations. However, morphological variation itself is strongly influenced by environmental factors (e.g., temperature) and maternal effects (e.g., variation in egg size). Understanding the full ecological context of individual variation and natural selection therefore requires an integrated view of how the interaction between the environment and development structures differences in morphology, performance, and fitness. Here we use naturally occurring environmental and maternal variation in the frog Bombina orientalis in South Korea to show that ovum size, average temperature, and variance in temperature during the early developmental period affect body sizes, shapes, locomotor performance, and ultimately the probability of an individual surviving interspecific predation in predictable but nonadditive ways. Specifically, environmental variability can significantly change the relationship between maternal investment in offspring and offspring fitness so that increased maternal investment can actually negatively affect offspring over a broad range of environments. Integrating environmental variation and developmental processes into traditional approaches of studying phenotypic variation and natural selection is likely to provide a more complete picture of the ecological context of evolutionary change.  相似文献   

17.
Sexual size dimorphism (SSD) among adults is commonly observed in animals and is considered to be adaptive. However, the ontogenic emergence of SSD, i.e. the timing of divergence in body size between males and females, has only recently received attention. It is widely acknowledged that the ontogeny of SSD may differ between species, but it remains unclear how variable the ontogeny of SSD is within species. Kentish Plovers Charadrius alexandrinus and Snowy Plovers C. nivosus are closely related wader species that exhibit similar, moderate (c. 4%), male‐biased adult SSD. To assess when SSD emerges we recorded tarsus length variation among 759 offspring in four populations of these species. Tarsus length of chicks was measured on the day of hatching and up to three times on recapture before fledging. In one population (Mexico, Snowy Plovers), males and females differed in size from the day of hatching, whereas growth rates differed between the sexes in two populations (Turkey and United Arab Emirates, both Kentish Plovers). In contrast, a fourth population (Cape Verde, Kentish Plovers) showed no significant SSD in juveniles. Our results suggest that adult SSD can emerge at different stages of development (prenatal, postnatal and post‐juvenile) in different populations of the same species. We discuss the proximate mechanisms that may underlie these developmental differences.  相似文献   

18.
Separating genetic and environmental causes of the latitudinal differences among populations is crucial when evaluating the potential for microevolutionary responses to the changing environment. We studied among‐population and environmental components of variation in several life‐history traits of a lichen‐feeding moth Eilema depressum when offspring of replicate Swiss and Finnish females were reared in a common‐garden factorial experiment. A partial second generation was produced only among Swiss larvae, more likely so at higher temperature regime and higher host quality, and more frequently among the offspring of particular females. Growth rates of larvae that chose the diapause development were higher in northern individuals. Our results thus reveal adaptive differences between latitudinal populations in studied life‐history traits, allowing to expect rapid adaptation of the species to further environmental changes. In contrast, invariable responses of the growth rates of the larvae to temperature and host quality support the idea that some basic parameters of insect growth show a high degree of evolutionary conservatism.  相似文献   

19.
Body size at birth has implications for the quality of individuals throughout their life. Although large body size is generally considered an advantage, the relationship between body size at birth and long-term fitness is often complicated. Under spatial or temporal variation in environmental conditions, such as the seasonally changing densities of Fennoscandian vole populations, selection should favor variation in offspring phenotypes, as different qualities may be beneficial in different conditions. We performed an experiment in which a novel hormonal manipulation method was used to increase phenotypic variance in body size at birth in the bank vole (Myodes glareolus). The effects of body size on the future fitness of young males and females were then studied at varying population densities in outdoor enclosures. Our results show that small body size at birth and high breeding density increase the survival costs of reproduction. However, there was no interaction between the effects of body size and density on survival, which suggests that the fitness effects of body size were strong enough to persist under environmental variation. Moreover, litter size and the probability of breeding were more sensitive to variation in breeding density than offspring size. Therefore, it is unlikely that individual fitness could be optimized by adjusting offspring body size to the prevailing population density through adaptive maternal effects. Our results highlight the significance of the costs of reproduction in the evolution of life-history traits, and give strong experimental support for the long-term fitness effects of body size at birth.  相似文献   

20.
Populations of Diaptomus leptopus (Copepoda: Calanoida) and other calanoid copepods exhibit varying degrees of sexual size dimorphism. We examined whether intraspecific or interspecific variation in dimorphism could be explained by allometry, and we examined the relationship between adult size attained and development rate to determine any relationship between the two. We compared the degree of sexual size dimorphism in D. leptopus and in other calanoid copepods inhabiting temporary and permanent habitats. Allometry did not explain variation in sexual size dimorphism within or among populations or among species. Permanence of habitat affected the degree of dimorphism: dimorphism was greater within and among species inhabiting temporary environments. Non-significant differences in development rate were found among populations and significant differences were found between sexes of D. leptopus when reared under identical laboratory conditions: males developed more rapidly than females but there was no general relationship between development rate and adult size. Potential adaptive hypotheses to explain the differences between populations inhabiting temporary and permanent habitats are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号