首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fission yeast Schizosaccharomyces pombe shares various important properties with higher eukaryotes and is now considered a useful host for elevated production of mammalian proteins for medicinal applications. The full-length nmt1 promoter has been widely used as a strong promoter in S. pombe expression system. In the present study, the promoters of the eno101 and gpd3 genes in S. pombe were identified as strong constitutive promoters. For convenient applications in the plasmids of S. pombe, these promoters were refined to 276-bp eno and 273-bp gpd promoters by deleting undesired sequences and examining the expression of reporter genes including lacZ and xynA. Both the refined eno and gpd promoters provided approximately 1.5-fold higher expression of LacZ than nmt1 promoter. Furthermore, gene expression under the control of the eno or gpd promoter was not repressed by the components of YES medium while nmt1 promoter was inhibited by thiamine in yeast extract. Therefore, both eno and gpd promoters offer opportunities for efficient production of recombinant proteins by S. pombe in high cell-density fermentation.  相似文献   

3.

Background

HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability.

Results

A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8.

Conclusions

This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.  相似文献   

4.
《Gene》1997,191(2):191-195
We have designed a series of vectors for use in the fission yeast Schizosaccharomyces pombe that allow fusion of any protein of interest to a triple HA epitope or a GST domain. The HA epitope may be placed at the N terminus or the C terminus under three different versions of the nmt1 promoter, to allow varying levels of gene expression. The GST tag may be placed at the N terminus or C terminus under control of a fully active nmt1 promoter. This family of vectors has compatible restriction sites and modular design, so that the protein under study may be exchanged easily between different plasmids. Using the Cdc19p protein as a test case, we have demonstrated that these plasmids can express functional tagged proteins in the fission yeast cell.  相似文献   

5.
Because of a large number of molecular similarities with higher eukaryotes, the fission yeast Schizosaccharomyces pombe has been considered a potentially ideal host for expressing human proteins having therapeutic and pharmaceutical applications. However, efforts in this direction are hampered by lack of a strong promoter. Here, we report the isolation and characterization of a strong, constitutive promoter from S. pombe. A new expression vector was constructed by cloning the putative promoter region of the lsd90 gene (earlier reported to be strongly induced by heat stress) into a previously reported high copy number vector pJH5, which contained an ARS element corresponding to the mat2P flanking region and a truncated URA3m selectable marker. The resulting vector was used to study and compare the level of expression of the luciferase reporter with that achieved with the known vectors containing regulatable promoter nmt1 and the strong constitutive promoter adh1 in S. pombe and the methanol-inducible AOX1 promoter in Pichia pastoris. Following growth in standard media the new vector containing the putative lsd90 promoter provided constitutive expression of luciferase, at a level, which was 19-, 39- and 10-fold higher than that achieved with nmt1, adh1 and AOX1 promoters, respectively. These results indicate a great potential of the new lsd90 promoter-based vector for commercial scale expression of therapeutic proteins in S. pombe.  相似文献   

6.
7.
8.
9.
10.

Background

Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle.

Results

Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes.

Conclusions

In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.  相似文献   

11.

Background

Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC), is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date.

Methodology/Principal Findings

We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp). No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Δ mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe.

Conclusions/Significance

We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different markers constructed in this research are available from NBRP-yeast (http://yeast.lab.nig.ac.jp/).  相似文献   

12.

Background

The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed.

Methodology/Principal Findings

Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast.

Conclusions/Significance

We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.  相似文献   

13.
14.
15.
16.
Heterologous expression systems can be utilized to great advantage in the study of cytochrome P450 enzymes. P450 3A4 is one of the major forms of cytochrome P450 found in liver. It is also involved in the metabolism of numerous widely used drugs and xenobiotics. In the present study human liver cytochrome P450 3A4 gene was transferred into the fission yeast Schizosaccharomyces pombe via two different S. pombe expression vectors carrying thiamine repressible promoter — nmt1 (pREP42) and constitutive promoter — adh1 (pART1). Heterologously expressed cytochrome P450 3A4 was detected in the cells grown in minimal (EMM) or rich medium (YEL) containing 0.5% (w/v) glucose. A typical cytochrome P450 peak for 3A4 was observed at 448 nm in microsomal fraction. The presence of heterologous expression of 3A4 form was also determined by SDS-PAGE and it molecular mass was identified as 52 kDa. The enzyme activity was confirmed by HPLC analysis, using testosterone as substrate.  相似文献   

17.

Purpose

Although promoter hypermethylation has been an accepted means of tumor suppressor gene inactivation, activation of otherwise normally repressed proto-oncogenes by promoter demethylation has been infrequently documented.

Experimental Design

In this study we performed an integrative, whole-genome analysis for discovery of epigenetically activated proto-oncogenes in head and neck cancer tumors. We used the 47K GeneChip U133 Plus 2.0 Affymetrix expression microarray platform to obtain re-expression data from 5-aza treated normal cell line and expression data from primary head and neck squamous cell carcinoma (HNSCC) tumor tissues and normal mucosa tissues. We then investigated candidate genes by screening promoter regions for CpG islands and bisulfite sequencing followed by QUMSP and RT PCR for the best candidate genes. Finally, functional studies were performed on the top candidate gene.

Results

From the top 178 screened candidates 96 had CpG islands in their promoter region. Seven candidate genes showed promoter region methylation in normal mucosa samples and promoter demethylation in a small cohort of primary HNSCC tissues. We then studied the demethylation of the top 3 candidate genes in an expanded cohort of 76 HNSCC tissue samples and 17 normal mucosa samples. We identified MAGEB2 as having significant promoter demethylation in primary head and neck squamous cell carcinoma tissues. We then found significantly higher expression of MAGEB2 in tumors in a separate cohort of 73 primary HNSCC tissues and 31 normal tissues. Finally, we found that MAGEB2 has growth promoting effects on minimally transformed oral keratinocyte cell lines but not a definite effect on HNSCC cell lines.

Conclusion

In conclusion, we identified MAGEB2 as activated by promoter demethylation in HNSCCand demonstrates growth promoting effects in a minimally transformed oral keratinocyte cell line. More studies are needed to evaluate MAGBE2''s exact role in HNSCC.  相似文献   

18.
19.
In the fission yeast Schizosaccharomyces pombe, the gld1 + gene encoding glycerol dehydrogenase is repressed by glucose and induced by ethanol and 1-propanol. The promoter region of gld1 + was cloned into a multicopy vector designated as pEG1 for evaluation as an ethanol-inducible expression vector using EGFP as a model heterologous protein. Expression of EGFP was repressed in the presence of high glucose and induced in the presence of ethanol, low-glucose, and 1-propanol in the absence of glucose. Addition of ethanol to cells harboring pEG1–EGFP was found to be the most effective means for inducing EGFP production. Protein yields were found to increase in proportion to ethanol concentration. As a further test of effectiveness, secreted recombinant human growth hormone was produced using the pEG1 expression vector in medium containing glycerol and ethanol. The pEG1 gene expression system is an effective tool for the production of heterologous proteins under glucose-limiting conditions, including medium containing glycerol as a carbon source.  相似文献   

20.

Background

Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system.

Methodology

Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 µM) TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 µM). Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient “wave” in luciferase activity, which can be repeated in subsequent growth cycles.

Conclusions

We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled “waves” in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号