首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Competition effects on community development are difficult to quantify in species-rich plant communities due to the complexity of possible interactions. We used multispecies mixtures to investigate how species identity and competitive interactions influence the development of plant communities. Given the same set of species with differing initial abundance in various communities, we tested whether communities would become more similar (converge) or dissimilar (diverge) over time depending on the relative importance of species identity and competition. Twenty-four experimental communities were established by planting seedlings of twelve wetland species at different relative abundances and absolute densities. The development of the communities was monitored over three years, and yearly changes in biomass were modelled as a linear function of the species biomass at the start of each period. After three years, a clear dominance structure had developed, with four species making up 80% of the aboveground biomass. In all three years, community dynamics was driven by differences in relative growth rates among the species (i.e. an effect of species identity). However, in the second and third years negative density dependence was also important, with changes in the relative abundance of the most abundant species being negatively related to their biomass at the start of the period. Multiple species interactions – though generally weaker than effects of species identity and intraspecific competition – became increasingly important and also contributed to the dominance pattern. It is concluded that species identity and negative density dependence of the dominant species were the most important factors causing the experimental plant communities to converge. We suggest that model systems composed of several species offer a useful method for investigating the influence of functional traits upon community dynamics.  相似文献   

2.
Plant diversity can affect ecological processes such as competition and herbivory, and these ecological processes can act as drivers of evolutionary change. However, surprisingly little is known about how ecological variation in plant diversity can alter selective regimes on members of the community. Here, we examine how plant diversity at two different scales (genotypic and species diversity) impacts natural selection on a focal plant species, the common evening primrose (Oenothera biennis). Because competition is frequently relaxed in both genotypically and species rich plant communities, we hypothesized that increasing diversity would weaken selection on competitive ability. Changes in plant diversity can also affect associated arthropod communities. Therefore, we hypothesized that diversity would alter selection on plant traits mediating these interactions, such as herbivory related traits. We grew 24 focal O. biennis genotypes within four different neighbourhoods: genotypic monocultures or polycultures of O. biennis, and species monocultures or polycultures of old-field species that commonly co-occur with O. biennis. We then measured genotypic selection on nine plant traits known to be ecologically important for competition and herbivory. Focal O. biennis plants were smaller, flowered for shorter periods of time, had lower fitness, and experienced greater attack from specialist predispersal seed predators when grown with conspecifics versus heterospecifics. While neither conspecific nor heterospecific diversity altered trait means, both types of diversity altered the strength of selection on focal O. biennis plants. Specifically, selection on plant biomass was stronger in conspecific monocultures versus polycultures, but weaker in heterospecific monocultures versus polycultures. We found no evidence of selection on plant traits that mediate insect interactions, despite differences in arthropod communities on plants surrounded by conspecifics versus heterospecifics. Our data demonstrate that plant genotypic and species diversity can act as agents of natural selection, potentially driving evolutionary changes in plant communities.  相似文献   

3.
Polyandry generates selection on males through sperm competition, which has broad implications for the evolution of ejaculates and male reproductive anatomy. Comparative analyses across species and competitive mating trials within species have suggested that sperm competition can influence the evolution of testes size, sperm production and sperm form and function. Surprisingly, the intraspecific approach of comparing among population variation for investigating the selective potential of sperm competition has rarely been explored. We sampled seven island populations of house mice and determined the frequency of multiple paternity within each population. Applying the frequency of multiple paternity as an index of the risk of sperm competition, we looked for selective responses in male reproductive traits. We found that the risk of sperm competition predicted testes size across the seven island populations of house mice. However, variation in sperm traits was not explained by sperm competition risk. We discuss these findings in relation to sperm competition theory, and other intrinsic and extrinsic factors that might influence ejaculate quality.  相似文献   

4.
As a step toward understanding how community context shapes mating system evolution, we investigated the combined role of two plant antagonisms, vegetative herbivory and intraspecific competition, for reproduction and mating system expression (relative production of selfing, cleistogamous and facultatively outcrossing, chasmogamous flowers and fruits) of Impatiens capensis. In a survey of I. capensis populations, we found that vegetative herbivory and intraspecific competition were positively correlated. In a greenhouse experiment where leaf damage and plant density were manipulated, multispecies interactions had dramatic effects on reproductive and mating system traits. Despite having additive effects on growth, herbivory and competition had nonadditive effects for mating system expression, chasmogamous fruit production, flower number and size, and cleistogamous flower production. Our results demonstrate that competitive interactions influence the effect of herbivory (and vice versa) on fitness components and mating system, and thus antagonisms may have unforeseen consequences for mating system evolution, population genetic diversity, and persistence.  相似文献   

5.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

6.
Every organism on Earth must cope with a multitude of species interactions both directly and indirectly throughout its life cycle. However, how selection from multiple species occupying different trophic levels affects diffuse mutualisms has received little attention. As a result, how a given species amalgamates the combined effects of selection from multiple mutualists and antagonists to enhance its own fitness remains little understood. We investigated how multispecies interactions (frugivorous birds, ants, fruit flies and parasitoid wasps) generate selection on fruit traits in a seed dispersal mutualism. We used structural equation models to assess whether seed dispersers (frugivorous birds and ants) exerted phenotypic selection on fruit and seed traits in the spiny hackberry (Celtis ehrenbergiana), a fleshy‐fruited tree, and how these selection regimes were influenced by fruit fly infestation and wasp parasitoidism levels. Birds exerted negative correlational selection on the combination of fruit crop size and mean seed weight, favouring either large crops with small seeds or small crops with large seeds. Parasitoids selected plants with higher fruit fly infestation levels, and fruit flies exerted positive directional selection on fruit size, which was positively correlated with seed weight. Therefore, higher parasitoidism indirectly correlated with higher plant fitness through increased bird fruit removal. In addition, ants exerted negative directional selection on mean seed weight. Our results show that strong selection on phenotypic traits may still arise in perceived diffuse species interactions. Overall, we emphasize the need to consider diverse direct and indirect partners to achieve a better understanding of the mechanisms driving phenotypic trait evolution in multispecies interactions.  相似文献   

7.
Wildflower plantings are an important mitigation tool within agri-environmental schemes to counter insect decline in resource-scarce agricultural landscapes. Effectiveness of wildflower plantings for insect conservation is typically studied at the community or species level. It is the individual, however, that is subject to changing abiotic and biotic conditions, not the species per se. Accordingly, functional traits of individuals, i.e., the intraspecific functional diversity within species, likely mediate responses to wildflower resources and landscape context. Here we focused on the ecologically and economically important wild insect pollinator Bombus terrestris to study its intraspecific functional diversity and plant-pollinator individual interactions in wildflower plantings. We found considerable trait variation among flower-visiting B. terrestris workers. Locally, this variation could be attributed to flowering plant traits, with larger workers visiting larger inflorescences and individuals with longer tongues preferentially feeding on zygomorphic but not radially symmetrical flowers. In addition, wildflower plantings with high floral abundance attracted individuals with larger pollen baskets. At the landscape scale, increasing proportion of arable land resulted in smaller B. terrestris individuals in wildflower plantings, and a decrease in the overall size diversity of workers. These findings highlight the so far little considered role of intraspecific variation in functional traits of wild pollinators, which can mediate the trait-matching between plants and pollinator individuals. Landscape simplification from agriculture threatens intraspecific pollinator diversity, with potential harmful effects for pollinator fitness and plant reproduction. Tailored wildflower plantings can thus serve as an important tool to increase intraspecific variation in simplified landscapes. When designing seed mixtures for these plantings, high complementarity in plant traits is key for promoting high intraspecific trait diversity of bumblebees and potentially of other associated insect species.  相似文献   

8.
While a considerable amount of attention has been devoted to the effects that increased ultraviolet-B (UV-B) radiation has on vegetative plant growth and physiological function, the impact that UV-B may have on plant fitness has been the focus of fewer studies, with attention given primarily to a few crop species. Further, the possible interactions between UV-B and additional potential stresses found in natural environments have rarely been studied experimentally. Because the reported effects of increased UV-B on plant growth and fitness have been highly variable, studies that focus on factors that may lead to these differences in results are important for the formulation of accurate predictions about future plant success under varying UV-B levels. We examined the effects of UV-B dose and intraspecific competition on growth, phenology, pollen production, pollination success, fruit and seed production, and offspring quality in two species of Phacelia. Increased UV-B was neutral or beneficial for all traits, while competition was neutral or detrimental. There were no significant interactions between UV-B and competition in the parental generation. Phacelia campanularia offspring were unaffected by parental competition, but derived indirect beneficial effects on germination, growth, and fitness traits from parental enhanced UV-B.  相似文献   

9.
10.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

11.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

12.
Ecological character displacement occurs when competition imposes divergent selection on interacting species, causing divergence in traits associated with resource use. Generally, divergence is assumed to occur when selection acts on the same, continuously varying trait in both species. However, selection might target multiple traits, and even closely related heterospecifics involved in character displacement might differ in selective targets. We investigated the targets of selection in a species of spadefoot toad, Spea multiplicata, during experimentally imposed competition with a congener, S. bombifrons. When examining traits separately, we found significant selection acting on multiple resource-acquisition traits. Yet, controlling for the independent effects of these traits in a multiple regression revealed that direct selection on a single trait might have contributed toward indirect selection on other correlated traits. Moreover, although we found evidence for plasticity in most traits, competition with S. bombifrons imposed selection on morphology and not on plasticity. Additional experiments suggest that the selective targets during character displacement might differ between the two species involved in this one instance of character displacement. Identifying the targets of competitively mediated selection is crucial, because whether and how character displacement ultimately unfolds depends on the nature of these targets and correlations among them.  相似文献   

13.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific competition, we show analytically that adaptive speciation and dimorphism require identical ecological conditions. Numerical simulations of individual-based models show that a single ecological model can produce either evolutionary outcome, depending on the genetic independence of male and female traits and the potential strength of assortative mating. Speciation is inhibited when the genetic basis of male and female ecological traits allows the sexes to diverge substantially. This is because sexual dimorphism, which can evolve quickly, can eliminate the frequency-dependent disruptive selection that would have provided the impetus for speciation. Conversely, populations with strong assortative mating based on ecological traits are less likely to evolve a sexual dimorphism because females cannot simultaneously prefer males more similar to themselves while still allowing the males to diverge. This conflict between speciation and dimorphism can be circumvented in two ways. First, we find a novel form of speciation via negative assortative mating, leading to two dimorphic daughter species. Second, if assortative mating is based on a neutral marker trait, trophic dimorphism and speciation by positive assortative mating can occur simultaneously. We conclude that while adaptive speciation and ecological sexual dimorphism may occur simultaneously, allowing for sexual dimorphism restricts the likelihood of adaptive speciation. Thus, it is important to recognize that disruptive selection due to frequency-dependent interactions can lead to more than one form of adaptive splitting.  相似文献   

14.
Although the evolution and diversification of flowers is often attributed to pollinator-mediated selection, interactions between co-occurring plant species can alter patterns of selection mediated by pollinators and other agents. The extent to which both floral density and congeneric species richness affect patterns of net and pollinator-mediated selection on multiple co-occurring species in a community is unknown and is likely to depend on whether co-occurring plants experience competition or facilitation for reproduction. We conducted an observational study of selection on four species of Clarkia (Onagraceae) and tested for pollinator-mediated selection on two Clarkia species in communities differing in congeneric species richness and local floral density. When selection varied with community context, selection was generally stronger in communities with fewer species, where local conspecific floral density was higher, and where local heterospecific floral density was lower. These patterns suggest that intraspecific competition at high densities and interspecific competition at low densities may affect the evolution of floral traits. However, selection on floral traits was not pollinator mediated in Clarkia cylindrica or Clarkia xantiana, despite variation in pollinator visitation and the extent of pollen limitation across communities for C. cylindrica. As such, interactions between co-occurring species may alter patterns of selection mediated by abiotic agents of selection.  相似文献   

15.
Does competition influence patterns of coexistence between closely related taxa? Here we address this question by analyzing patterns of range overlap between related species of birds (‘sister pairs’) co‐occurring on a tropical elevational gradient. We explicitly contrast the behavioral dimension of interspecific competition (interference competition) with similarity in resource acquisition traits (exploitative competition). Specifically, we ask whether elevational range overlap in 118 sister pairs that live along the Manu Transect in southeastern Peru is predicted by proxies for competition (intraspecific territorial behavior) or niche divergence (beak divergence and divergence times, an estimate of evolutionary age). We find that close relatives that defend year‐round territories tend to live in non‐overlapping elevational distributions, while close relatives that do not defend territories tend to broadly overlap in elevational distribution. In contrast, neither beak divergence nor evolutionary age was associated with patterns of range limitation. We interpret these findings as evidence that behavioral interactions – particularly direct territorial aggression – can be important in setting elevational range limits and preventing coexistence of closely related species, though this depends upon the extent to which intraspecific territorial behavior can be extended to territorial interactions between species. Our results suggest that interference competition can be an important driver of species range limits in diverse assemblages, and thus highlight the importance of considering behavioral dimensions of the niche in macroecological studies.  相似文献   

16.
Conflicting hypotheses predict how traits mediate species establishment and community assembly. Traits of newly establishing individuals are predicted to converge, or be more similar to the resident, preexisting community, when the biotic or abiotic environment favors a single best phenotype, but are predicted to diverge when trait differences reduce competitive interactions. We tested these competing hypotheses using transplant seedlings in an old‐field environment, and assessed the contribution of inter‐ and intra‐specific transplant trait variation to community‐level patterns. Using a soil moisture gradient and resident plant removals, we determined when traits of newly‐establishing plants converge or diverge from the resident community by calculating community weighted mean traits for transplant and resident communities. We saw evidence of environmentally‐ and competitively‐driven trait shifts that resulted in both trait convergence and divergence from the resident community, whose traits reflect the combined effects of both drivers. Leaf dry matter content (LDMC) of transplants diverged in the presence of competition, whereas plant height and stem‐specific density (SSD) showed the opposite pattern, converging with the resident community in their presence. Specific leaf area (SLA) shifted with competition but did not reflect resident community SLA. All transplant traits were influenced by soil moisture, often in an interaction with competition, indicating that the strength of convergence or divergence is contingent on the abiotic environment. Intraspecific differences in transplant traits among treatments were evident in three of four traits; intraspecific height and SLA trends mirrored transplant community‐level trends, whereas intraspecific shifts in SSD were distinct from community‐level trends. Our study shows competition between plant species may cause traits of newly establishing plants to converge with the resident community, as frequently as it selects for trait divergence. These opposing effects of competition suggest that it plays a pervasive role in both intraspecific and species‐level trait differences among communities.  相似文献   

17.
Previous work on colonial hydroids in the genus Hydractinia has demonstrated that colony morphology is highly variable and determines intraspecific competitive ability. Competitive encounters are known to be common in nature, suggesting that intraspecific competition may be a major selective force acting on morphological variation. A replicated common garden experiment demonstrated a genetic basis to morphological variation and two data sets provided correlative support for the hypothesis of selection by intraspecific competition. First, morphologies inferior in competitive ability were less abundant in two adult, postcompetition, samples than in juvenile, precompetition, samples from the same populations. Second, among eight populations, the relative frequency of different morphologies was correlated with the frequency of intraspecific competition observed in each population. The direction of selection by competition on the morphological variation present in this species conflicts with recent predictions based on surveys across diverse taxa, suggesting limitations to the inference of competition as a past selective agent on the basis of present day correlations among species.  相似文献   

18.
The majority of studies on environmental change focus on the response of single species and neglect fundamental biotic interactions, such as mutualism, competition, predation, and parasitism, which complicate patterns of species persistence. Under global warming, disruption of community interactions can arise when species differ in their sensitivity to rising temperature, leading to mismatched phenologies and/or dispersal patterns. To study species persistence under global climate change, it is critical to consider the ecology and evolution of multispecies interactions; however, the sheer number of potential interactions makes a full study of all interactions unfeasible. One mechanistic approach to solving the problem of complicated community context to global change is to (i) define strategy groups of species based on life‐history traits, trophic position, or location in the ecosystem, (ii) identify species involved in key interactions within these groups, and (iii) determine from the interactions of these key species which traits to study in order to understand the response to global warming. We review the importance of multispecies interactions looking at two trait categories: thermal sensitivity of metabolic rate and associated life‐history traits and dispersal traits of species. A survey of published literature shows pronounced and consistent differences among trophic groups in thermal sensitivity of life‐history traits and in dispersal distances. Our approach increases the feasibility of unraveling such a large and diverse set of community interactions, with the ultimate goal of improving our understanding of community responses to global warming.  相似文献   

19.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

20.
Our understanding of trait evolution is built upon studies that examine the correlation between traits and fitness, most of which implicitly assume all individuals experience similar selective environments. However, accounting for differences in selective pressures, such as variation in the social environment, can advance our understanding of how selection shapes individual traits and subsequent fitness. In this study, we test whether variation in the social environment affects selection on individual phenotype. We apply a new sexual network framework to quantify each male's social environment as the mean body size of his primary competitors. We test for direct and social selection on male body size using a 10‐year data set on black‐throated blue warblers (Setophaga caerulescens), a territorial species for which body size is hypothesized to mediate competition for mates. We found that direct selection on body size was weak and nonsignificant, as was social selection via the body size of the males' competitors. Analysing both types of selection simultaneously allows us to firmly reject a role for body size in competitive interactions between males and subsequent male fitness in this population. We evaluate the application of the sexual network approach to empirical data and suggest that other phenotypic traits such as song characteristics and plumage may be more relevant than body size for male–male competition in this small passerine bird.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号