首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

2.
The neuronal ceroid lipofuscinoses (NCL) are a group of progressive neurodegenerative disorders characterized by the deposition of autofluorescent proteinaceous fingerprint or curvilinear bodies. We have found that CLN3, the gene underlying the juvenile form of NCL, is very tightly linked to the dinucleotide repeat marker D16S285 on chromosome 16. Integration of D16S285 into the genetic map of chromosome 16 by using the Centre d'Etude du Polymorphisme Humain panel of reference pedigrees yielded a favored marker order in the CLN3 region of qtel-D16S150-.08-D16S285-.04-D16S148-.02-D16S 67-ptel. The most likely location of the disease gene, near D16S285 in the D16S150-D16S148 interval, was favored by odds of greater than 10(4):1 over the adjacent D16S148-D16S67 interval, which was recently reported as the minimum candidate region. Analysis of D16S285 in pedigrees with late-infantile NCL virtually excluded the CLN3 region, suggesting that these two forms of NCL are genetically distinct.  相似文献   

3.
The neuronal ceroid lipofuscinoses (NCL) are a group of fatal autosomal recessive neurodegenerative diseases occurring in human and some domesticated animal species. A canine form of the disease (CNCL) has been extensively studied in a Norwegian colony of inbred English setters since 1960. A resource family developed for genetic mapping and comprising 170 individuals was typed for 103 genetic markers. Linkage analysis showed three genetic markers to be linked to the disease locus with the closest marker at a distance of about 3 c m . Two other loci were linked with these markers making a linkage group of five genetic markers. The linkage group spanned a distance of 54 c m . Two genes for human forms of the disease, CLN2 and CLN3 , have been identified and mapped to human chromosome 11p15 and 16p12, respectively. The present study did not indicate any linkage between CNCL and the canine CLN3 homologue or to homologues of markers for genes that map close to human CLN2 .  相似文献   

4.
The gene for Batten disease (juvenile-onset neuronal ceroid lipofuscinosis, or Spielmeyer-Sjögren disease), CLN3, maps to 16p11.2-12.1. Four microsatellite markers--D16S288, D16S299, D16S298, and SPN--are in strong linkage disequilibrium with CLN3 in 142 families from 16 different countries. These markers span a candidate region of approximately 2.1 cM. CLN3 is most prevalent in northern European populations and is especially enriched in the isolated Finnish population, with an incidence of 1:21,000. Linkage disequilibrium mapping was applied to further refine the localization of CLN3 in 27 Finnish families by using linkage disequilibrium data and information about the population history of Finland to estimate the distance of the closest markers from CLN3. CLN3 is predicted to lie 8.8 kb (range 6.3-13.8 kb) from D16S298 and 165.4 kb (132.4-218.1 kb) from D16S299. Enrichment of allele "6" at D16S298 (on 96% of Finnish and 92% of European CLN3 chromosomes) provides strong evidence that the same major mutation is responsible for Batten disease in Finland as in most other European countries and that it is therefore not a Finnish mutation. Genealogical studies show that Batten disease is widespread throughout the densely populated regions of Finland. The ancestors of two Finnish patients carrying rare alleles "3" and "5" at D16S298 in heterozygous form originate from the southwestern coast of Finland, and these probably represent other foreign mutations. Analysis of the number and distribution of CLN3 haplotypes from 12 European countries provides evidence that more than one mutation has arisen in Europe.  相似文献   

5.
Hereditary nonchromaffin paragangliomas (PGL; glomus tumors; MIM 168000) are mostly benign, slow-growing tumors of the head and neck region, inherited from carrier fathers in an autosomal dominant fashion subject to genomic imprinting. Genetic linkage analysis in two large, unrelated Dutch families assigned PGL loci to two regions of chromosome 11, at 11q23 (PGL1) and 11q13.1 (PGL2). We ascertained a total of 11 North American PGL families and confirmed maternal imprinting (inactivation). In three of six families, linkage analysis provided evidence of linkage to the PGL1 locus at 11q23. Recombinants narrowed the critical region to an approximately 4.5-Mb interval flanked by markers D11S1647 and D11S622. Partial allelic loss of strictly maternal origin was detected in 5 of 19 tumors. The greatest degree of imbalance was detected at 11q23, distal to D11S1327 and proximal to CD3D. Age at onset of symptoms was significantly different between fathers and children (Wilcoxon rank-sum test, P < .002). Affected children had an earlier age at onset of symptoms in 39 of 57 father-child pairs (chi2 = 7.74, P < .006). However, a more conservative comparison of the number of pairs in which a child had > or = 5 years earlier age at onset (n = 33) vis-a-vis that of complementary pairs (n = 24) revealed no significant difference (chi2 = 1.42, P > .2). Whether these data represent genetic anticipation or ascertainment bias can be addressed only by analysis of a larger number of father-child pairs.  相似文献   

6.
Six extended dyslexic families with at least four affected individuals were genotyped with markers in three chromosomal regions: 6p23-p21.3, 15pter-qter, and 16pter-qter. Five theoretically derived phenotypes were used in the linkage analyses: (1) phonological awareness; (2) phonological decoding; (3) rapid automatized naming; (4) single-word reading; and (5) discrepancy between intelligence and reading performance, an empirically derived, commonly used phenotype. Two-point and multipoint allele-sharing analyses of chromosome 6 markers revealed significant evidence (P < 10(-6)) for linkage of the phonological awareness phenotype to five adjacent markers (D6S109, D6S461, D6S299, D6S464, and D6S306). The least compelling results were obtained with single-word reading. In contrast, with chromosome 15 markers, a LOD score of 3.15 was obtained for marker D15S143 at theta = 0.0 with single-word reading. Multipoint analyses with markers adjacent to D15S143 (D15S126, D15S132, D15S214, and D15S128) were positive, but none reached acceptable significance levels. Chromosome 15 analyses with the phonological awareness phenotype were negative. Parametric and nonparametric linkage analyses with chromosome 16 markers were negative. The most intriguing aspect of the current findings is that two very distinct reading-related phenotypes, reflecting different levels in the hierarchy of reading-related skills, each contributing to different processes, appear to be linked to two different chromosomal regions.  相似文献   

7.
The gene for Batten disease (CLN3) has been mapped to human chromosome 16 by demonstration of linkage to the haptoglobin locus, and its localization has been further refined using a panel of DNA markers. The aim of this work was to refine the genetic and physical mapping of this disease locus. Genetic linkage analysis was carried out in a larger group of families by using markers for five linked loci. Multipoint analysis indicated a most likely location for CLN3 in the interval between D16S67 and D16S148 (Z = 12.5). Physical mapping of linked markers was carried out using somatic cell hybrid analysis and in situ hybridization. A mouse/human hybrid cell panel containing various segments of chromosome 16 has been constructed. The relative order and physical location of breakpoints in the proximal portion of 16p were determined. Physical mapping in this panel of the markers for the loci flanking CLN3 positioned them to the bands 16p12.1----16p12.3. Fluorescent in situ hybridization of metaphase chromosomes by using these markers positioned them to the region 16p11.2-16p12.1. These results localize CLN3 to an interval of about 2 cM in the region 16p12.  相似文献   

8.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. Inheritance is autosomal recessive. Three main childhood subtypes are recognized: infantile (Haltia-Santavuori disease; MIM 256743), late infantile (Jansky-Bielschowsky disease; MIM 204500), and juvenile (Spielmeyer-Sjögren-Vogt, or Batten, disease; MIM 204200). The gene loci for the juvenile (CLN3) and infantile (CLN1) types have been mapped to human chromosomes 16p and 1p, respectively, by linkage analysis. Linkage analysis of 25 families segregating for late-infantile NCL has excluded these regions as the site of this disease locus (CLN2). The three childhood subtypes of NCL therefore arise from mutations at distinct loci.  相似文献   

9.
A highly polymorphic (dC-dA)n.(dG-dT)n dinucleotide repeat at the PLC1 locus on human chromosome 20 has been identified. Primers flanking the dinucleotide repeat were used for PCR amplification of the repeat region in 37 informative kindreds from the Centre d'Etude du Polymorphisme Humain. Two-point linkage analysis indicates that PLC1 is closely linked to several chromosome 20 markers, including D20S16 (Zmax = 41.25; theta = 0.07), D20S17 (Zmax = 42.81; theta = 0.09), and ADA (Zmax = 57.24; theta = 0.05). Multipoint linkage analysis places the PLC1 locus between D20S18 and D20S17, 11.2 and 6.6 cM, respectively, from these loci (sex-averaged distances). In addition, the PLC1 gene shows linkage to the maturity-onset diabetes of the young (MODY) locus on chromosome 20 with a lod score of 4.57 at theta = 0.089.  相似文献   

10.
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance. Genetic linkage studies were undertaken to determine the chromosomal location of the Batten disease mutation (CLN3). Following identification of linkage to the haptoglobin locus, linkage analysis has been carried out in 42 families by using DNA markers for loci on the long arm of human chromosome 16. The maximal lod score between Batten disease and the locus D16S148 calculated for combined sexes is 6.05 at a recombination fraction theta = 0.00. Multilocus analysis using five loci indicated the most likely order to be HP-D16S151-D16S150-CLN3-D16S148-D16S147. The maximal location score for CLN3 was 48 (equivalent to a lod score of 10.4) in that interval within this fixed marker map.  相似文献   

11.
Inheritance of chromosomes 3 and 11 in the families with Chuvash autosomal recessive polycythemia and in control group with no disease symptoms was examined using polymorphic dinucleotide markers D3S1597 and D3S1263, mapped to region 3p25, and D11S4111, D11S4127, and D11S1356, mapped to region 11q23. All patients were homozygous for the C598T mutation in the VHL gene (3p25). The analysis showed that in 75% of the cases, chromosome 3 carrying C598T mutation was coinherited with certain chromosome 11, which differed from 50%, expected upon independent inheritance of each chromosome. In case of chromosome 3 without C598T mutation, this pattern was observed neither in healthy sibs form the families with autosomal recessive polycythemia (44%), nor in the control group (43%). These results suggest that in case of the C598T mutation in the VHL gene, chromosomal loci 3p25 and 11q23 are inherited not independently, compared to the inheritance of these loci in the absence of the mutation in healthy sibs from the affected families (chi2 = 16.14; P < 0.001), and also in the control family sample (chi2 = 17.91; P < 0.001).  相似文献   

12.
Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder associated with external-, middle-, and inner-ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss, and renal anomalies. The gene for BOR was mapped to the long arm of chromosome 8q. Several polymorphic dinucleotide repeat markers were investigated for linkage in two large BOR families, and the region of localization was refined. Two-point linkage analysis yielded the maximum lod scores of 7.44 at theta = .03 and 6.71 at theta = .04, with markers D8S279 and D8S260, respectively. A multipoint analysis was carried out to position the BOR gene with a defined region using markers D8S165, D8S285, PENK, D8S166, D8S260, D8S279, D8S164, D8S286, D8S84, D8S275, D8S167, D8S273, and D8S271. Haplotype analysis of recombination events at these polymorphic loci was also performed in multigeneration BOR kindreds. The linkage analysis and analysis of recombination events identified markers that clearly flank the BOR locus. The order was determined to be D8S260-BOR-D8S279 at odds > 10(3):1 over the other possible orders. This flanking markers provide a resource for high-resolution mapping toward cloning and characterizing the BOR gene.  相似文献   

13.
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.  相似文献   

14.
Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1 in 1500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20 to 30 generations ago (i.e., approximately 500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie approximately 200 - 400 kb (total range 30 - 1360 kb) from the closest marker D13S162.  相似文献   

15.
The enzymes of the 17β-hydroxysteroid dehydrogenase (17β-HSD) gene family are responsible for a key step in the formation and degradation of androgens and estrogens: catalyzing the interconversion of 17-ketosteroids and their active 17β-hydroxysteroid counterparts. The structure of human type II 17β-HSD cDNA was recently reported. This enzyme catalyzes the interconversion of Δ4-androstenedione and testosterone, androstanedione and dihydrotestosterone, and estrone and 17β-estradiol, whereas type I 17β-HSD catalyzes exclusively the interconversion of estrogens. To locate the HSD17B2 gene, the novel dinucleotide CA repeat sequence found 571 bp downstream from the end of exon 1 was genotyped into eight CEPH reference families by PCR. Two-point linkage analysis was performed between the latter polymorphism and the 2066 microsatellite markers of Généthon. The maximal pairwise lod score (Zmax = 33.3) with a maximal recombination fraction (θmax) of 0.008 was obtained with the marker D16S422 located on 16q24.1–q24.2. To define further the localization of the HSD17B2 gene, we constructed a high-resolution genetic map of the region flanking the polymorphic HSD17B2 gene including eight Généthon markers. The order of the HSD17B2 gene and markers is qter-D16S516 — D16S504 — D16S507 — D16S505 — D16S511 — [HSD17B2—D16S422]—D16S520—D16S413—tel.  相似文献   

16.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

17.
Manic-depressive illness (MDI), also known as "bipolar affective disorder," is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, we ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping 5 cM from the disease gene, the pedigree sample has > 97% power to detect a dominant allele under genetic homogeneity and has > 73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores < -2.0 at recombination fraction (theta) = .0, 174 DNA loci produced lod scores < -2.0 at theta = .05, and 4 DNA marker loci yielded lod scores > 1 (chromosome 5--D5S39, D5S43, and D5S62; chromosome 11--D11S85). Of the markers giving lod scores > 1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, our linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk.  相似文献   

18.
The locus responsible for the childhood-onset proximal spinal muscular atrophies (SMA) has recently been mapped to an area of 2–3 Mb in the region q12–13.3 of chromosome 5. We have used a series of radiation hybrids (RHs) containing distinct parts of the SMA region as defined by reference markers. A cosmid library was constructed from one RH. Thirteen clones were isolated and five of these were mapped within the SMA region. Both RH mapping and fluorescence in situ hybridization analysis showed that two clones map in the region between loci D5S125 and D5S351. One of the cosmids contains expressed sequences. Polymorphic dinucleotide repeats were identified in both clones and used for segregation analysis of key recombinant SMA families. One recombination between the SMA locus and the new marker 9Ic (D5S685) indicates that 9Ic is probably the closest distal marker. The absence of recombination between the SMA locus and marker Fc (D5S684) suggests that Fc is located close to the disease gene. These new loci should refine linkage analysis in SMA family studies and may facilitate the isolation of the disease gene.  相似文献   

19.
Genetic diversity and forensic parameters based on 15AmpFlSTR Identifiler short tandem repeat (STR) loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) were evaluated in a sample of 101 unrelated, autochthonous adults from Montenegro. After applying Bonferroni correction, the agreement with Hardy-Weinberg equilibrium (HWE) was confirmed for all loci with the exception of D5S818 (chi2 test) and D21S11 (exact test). The combined power of discrimination (PD) and the combined power of exclusion (PE) for the 15 studied loci were 0.9999999999999999844 and 0.99999382, respectively. According to measures of within-population genetic diversity, D2S1338, D18S51 and FGA may be considered as the most variable and most informative markers for forensic testing and population genetic analyses out of the 15 analysed loci in a population of Montenegro. D5S818 showed to be the least variable and together with TPOX, the least informative. Interpopulation comparisons were carried out and levels of genetic differentiation between population of Montenegro and five South-eastern European populations (Kosovo Albanians, Serbians from Vojvodina province, Macedonians, Bosnians and Croatians) were evaluated. The most differentiated population in relation to Montenegro is a population of Kosovo Albanians as suggested by both AMOVA and coefficients of genetic differentiation (F(ST) and R(ST)).  相似文献   

20.
Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号