首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Averaged evoked potentials in the inferior colliculus (IC), medial geniculate nucleus (MG) and reticular formation (RF) of chronically implanted and freely moving cats were measured using auditory step functions in the form of tone bursts of 2000 Hz. The most prominent components of the AEP of the inferior colliculus were a positive wave of 13 msec and a negative wave of 40–55 msec latency. The AEP of the medial geniculate nucleus was characterized by a large negative wave peaking at 35–40 msec. During spindle sleep and slow wave sleep stages changes in the AEPs of both nuclei occured.Transient evoked responses of the inferior colliculus, medial geniculate nucleus and reticular formation were transformed to the frequency domain using the Laplace transform (one sided Fourier transform) in order to obtain frequency characteristics of the systems under study. The amplitude characteristics of IC, MG. and RF obtained in this way revealed maxima in alpha (8–13 Hz), beta (18–35 Hz) and higher frequency (50–80 Hz) ranges. During spindle sleep stage a maximum in the theta frequency range (3–8 Hz) and during slow wave sleep maximum in the delta (1–3 Hz) frequency range appeared in the amplitude characteristics of these nuclei.The amplitude characteristics of the inferior colliculus and medial geniculate nucleus were compared with the amplitude characteristics of other brain structures. The comparison of AEPs and amplitude frequency characteristics obtained using these AEPs reveals that the existence of a number of peaks (waves) with different latencies in the time course does not necessarily indicate the existence of different functional structures or neural groups giving rise to these waves. The entire time course of evoked potentials and not the number and latencies of the waves, carries, the whole information concerning different activities and frequency selectivities of brain structures.Supported by Turkish Scientific and Technical Research Council Grant TAG-266.Presented in Part at the VIIIth International Congress of Electroencephalography and Clinical Neurophysiology in Marseilles, September 1–7, 1973.  相似文献   

2.
With age regular changes take place in the latent periods of spikes of the slow auditory evoked potential. In particular, the latencies of the comparatively early waves (P1, N1, and P2) become progressively shortened. Between 3–7 and 8–13 years the decrease is 50–60 msec, and later it is 25–35 msec. The latencies of the latest waves, especially P3, N3, and P4, increase from 3–7 to 8–13 years by 35–65 msec. Later the latent period of the P3 spike remains unchanged but the N3 and P4 waves disappear completely. Of all the components of the slow auditory evoked potential the most stable is the N2 wave, the latent period of which decreases only very slightly with age. In children aged 3–7 years two wave complexes (P1N1P2 and P2N2P3) overlap frequently to form a single undifferentiated wave. This splits up into its components by 8 years of age. Long age changes in the shape and parameters of the slow auditory evoked potential are examined from the standpoint of the predominantly extralemniscal origin of this potential. On the basis of correlation discovered between the late waves of the evoked potential and the level of EEG synchronization it is postulated that the late waves of the slow evoked potential are formed with the participation of the nonspecific synchronizing system.Tbilisi State Postgraduate Medical Institute. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 3–10, January–February, 1977.  相似文献   

3.
The hippocampal averaged evoked potentials (AEPs) of the cat brain were analysed using a theoretical filtering method. Application of ideal low pass filters with different cutoff frequencies supports and enlarges previous findings and interpretations of Baar and Özesmi (1972) based on frequency characteristics of the hippocampus: This brain structure has significant beta frequency (18–35 Hz) selectivity near its typical theta (3–8 Hz) resonance. Moreover oscillatory hippocampal waveforms are predicted. The use of pass band and stop band filters allows one to derive conclusions and principles for the analysis and understanding of averaged evoked potentials in general.  相似文献   

4.
Previous studies on cognitive dynamics showed that oscillatory responses of P300 are composed of mainly delta and theta responses. In the present study, for the first time, the long-distance intra-hemispheric event related coherence (auditory oddball paradigm) and evoked coherence (simple sound) were compared in order to evaluate the effects of cognitive tasks on the long-distance coherences. Seventeen healthy subjects (8 female, 9 male) were included in the study. The coherence was analyzed for delta (1–3.5 Hz), theta (4–7.5 Hz) and alpha (8–13 Hz) frequency ranges for (F3-P3, F4-P4, F3-T7, F4-T8, F3-O1, F4-O2) electrode pairs. The coherence to target responses were higher than the non-target and simple auditory response coherence. This difference is significant for the delta coherence for both hemispheres and for theta coherences over the left hemisphere. The highest coherences were recorded at fronto-temporal locations for all frequency bands (delta, theta, alpha). Furthermore, fronto-parietal coherences were higher than the fronto-occipital coherences for all frequency bands (delta, theta, alpha).These results show that the fronto-temporal and fronto-parietal connections are most relevant for the identification of the target signal. This analysis open the way for a new interpretation of dynamic localization results during cognitive tasks.  相似文献   

5.
Binaural interactions was evaluated in guinea pigs by plotting the difference between the algebraic sum of brainstem evoked potentials recorded during monaural stimulation of the right and left ears and those produced by binaural stimuli. This plot was distinguished by three peaks (N1, P1, and N2) in the region of IV–IV wave latencies (short-latency acoustic evoked potentials) in the absence of masking noise, but using masking noise (signal-noise ratio: +20-0 dB), plots showed additional peaks No and Po in the region of wave III–III latencies. The amplitude of P1N2 in relation to that of wave IV of the summated potentials recording monaural stimulation of the right and left ear remains constant with an increase in the sound pressure level from 47 to 107 dB. This relationship grows with a decline in the signal-noise ratio when masking is used, while the P1N2 amplitude declines. It is postulated that binaural interaction pattern does not change when the clicking sound increases in intensity and that distinctive aspects of neurophysiological mechanisms underlying binaural interaction emerge during masking with a signal-noise ratio of +20-0 dB.Institute of Otolaryngology, Ministry of Public Health of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 579–586, September–October, 1987.  相似文献   

6.
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in dolphins (Turslops truncatus). The EFR was evoked by amplitude-modulated probes of various frequencies. A modulation rate of 600 Hz was found to fit the requirement to have a narrow spectrum and evoke EFR of large amplitude. Tuning curves were obtained within the frequency range from 11.2 to 110 kHz. The Q10 values of the obtained tuning curves varied from 12–14 at the 11.2 kHz center frequency to 17–20 at the 64–90 kHz frequencies.Abbreviations ABR auditory brainstem response - EFR envelope following response - ERB equivalent rectangular bandwidth  相似文献   

7.
Evoked potentials in the auditory cortex of the cat are measured by applying auditory stimulations in the form of tone bursts of 700 Hz. Transient evoked potentials obtained in this way are transformed to the frequency domain using a Laplace Transform. The amplitude frequency characteristic obtained with this semi-empirical method depicts maxima of EEG-amplitude in frequency ranges of 10–13 Hz and 60–80 Hz. The correlation between the time course of evoked potentials and spontaneous activity of the brain and the efficiency of the method used are pointed out.  相似文献   

8.
Brain resonance phenomena and induced rhythms in the brain recently gained importance in electroencephalographic, magnetoencephalographic and cellular studies (Ba\c sar and Bullock 1992). It was hypothesized that evoked potentials are superpositions of induced rhythms caused by resonance phenomena in neural populations (Ba\c sar et al. 1992). According to Ba\c sar (1972), such resonance phenomena are reflected in the main peaks of the amplitude frequency characteristics computed from EEG responses. The present study is based on a frequency domain approach for the evaluation of topography- and modality-dependent properties of oscillatory brain responses. EEG and evoked potentials were recorded from vertex, parietal and occipital scalp locations in 24 volunteers. Two combined methods were applied: (1) amplitude frequency characteristics were computed from the transient evoked responses, and (2) frequency components of the transient responses were obtained by adaptive digital filtering. Our main goal was to investigate theta (4--7 Hz) and alpha (8--15 Hz) response components. (1) Amplitude frequency characteristics. Auditory stimuli elicited theta-alpha compound responses in the 4--11 Hz frequency band (e.g. typical peaking frequency around 7 Hz for vertex recordings). Visual stimuli elicited alpha responses (e.g. typical peaking frequency for vertex recordings around 9--12 Hz). Frequency maxima for visual stimuli thus had main peaks at higher frequency values than frequency maxima for auditory stimuli. (2) Digital filtering confirmed these results: for vertex recordings, theta vs. alpha response amplitudes were 9 vs 6 for auditory stimuli and 5 vs 5 for visual stimuli, thus confirming a shift towards higher frequencies, i.e. a more prominent contribution of the alpha range, in the case of visual stimulation. We hypothesize that these properties might reflect site- and modality-specific features of stimulus encoding in the brain in which resonance properties of neuron populations are involved. Furthermore we emphasize the utility of the systems theory approach for a better understanding of brain function by means of EPs. Received: 25 February 1994 / Accepted in revised form: 5 August 1994  相似文献   

9.
LPA1 is a Gi-coupled seven transmembrane receptor with high affinity for the ligand lysophosphatidic acid. We have investigated the effect of targeted deletion at the lpa1 locus on evoked release of amino acids from hippocampal slices, using in vitro superfusion techniques, and evoked 5-HT efflux from the dorsal raphe nucleus, using in vitro fast cyclic voltammetry. Superfusion of hippocampal slices revealed that basal levels of tyrosine, aspartate and glutamate release were significantly increased while K+-evoked release of glutamate and GABA were significantly decreased in lpa1(–/–) mice. Fast cyclic voltammetry measurements in the dorsal raphe nucleus demonstrated significant decreases in electrically evoked 5-HT efflux in lpa1(–/–) mice. In summary, these data demonstrate that the lpa1 mutation produces a number of changes in neurotransmitters that have been associated with a schizophrenic-like pathology.  相似文献   

10.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

11.
Neural oscillations are evident across cortex but their spatial structure is not well- explored. Are oscillations stationary or do they form “traveling waves”, i.e., spatially organized patterns whose peaks and troughs move sequentially across cortex? Here, we show that oscillations in the prefrontal cortex (PFC) organized as traveling waves in the theta (4-8Hz), alpha (8-12Hz) and beta (12-30Hz) bands. Some traveling waves were planar but most rotated. The waves were modulated during performance of a working memory task. During baseline conditions, waves flowed bidirectionally along a specific axis of orientation. Waves in different frequency bands could travel in different directions. During task performance, there was an increase in waves in one direction over the other, especially in the beta band.  相似文献   

12.
The effects of septal lesion and entorhinal cortex section on hippocampal electrical activity during the cat sleep-wake cycle were investigated in chronic experiments. The medial portion of the septum only was found to participate in generation of this activity. Complete suppression of hippocampal theta rhythm during active wakefulness and paradoxical sleep were the main effects of septal lesion. In slow-wave sleep, the effects of septal lesion manifested in a slight attenuation of the intensity of the dominant frequency (of 1 Hz). Widespread septal lesion does not add to the changes occurring when the medial portion of the septum is so isolated. Section of the entorhinal cortex produces a sharp increase in hippocampal theta rhythm during waking and paradoxical sleep. Clearcut attenuation of delta and subdelta rhythm intensities were observed in slowwave sleep. It is postulated that under normal conditions hippocampal entorhinal input exerts a modulating effect on the genesis of hippocampal theta rhythm.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 622–630, September–October, 1987.  相似文献   

13.
Changes in EEG spectrum power from 19 electrode sites were studied in 19 children with attention disorders during one session of EEG–biofeedback (EEG–BFB). EEG–BFB was aimed at increasing the relative power of the 1 rhythm (15–18 Hz) in sites FzC 3 with a bipolar electrode assembly. Comparison of the EEG spectrum powers at relaxation versus training periods in one BFB session revealed significant changes in the left parasagittal frontoparietal area (F 3, Fz, C 3, C 4, P 3).  相似文献   

14.
Four chromium salts with different oxidation states were tested for their influence in causing chromosome aberrations and sister-chromatid exchange in Chinese hamster ovary cellsin vitro. Cell cultures were treated with CrO3, K2Cr2O7, CrCl2 and Cr(NO3)3.9H2O at concentrations of 10–7, 10–6, 10–5 and 10–4 M for the aberration assay, and 10–8, 10–7, 10–6 and 10–5 M for the sister-chromatid exchange assay. It was noticed that Cr (VI) compounds-CrO3 and K2Cr2O7-considerably enhanced the frequencies of aberrations and sister-chromatid exchanges compared to the control cultures. CrCl2 and Cr(NO3)3.9H2O–Cr (II) and Cr (III) respectively-caused a slight increase in sister-chromatid exchange rates, but the frequencies of aberrations were almost unchanged compared to the controls. These investigations indicate a definite link between the metals and changes produced in the mammalian chromosomes, reaffirming the evidence of carcinogenic potential of Cr (VI) observed by other investigators.Abbreviations BrdU 5-bromo-2-deoxyuridine - CHO Chinese hamster ovary - SCE sister-chromatid exchange  相似文献   

15.
channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via ''s ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.  相似文献   

16.
The theta oscillation is a neuroscience enigma. When a rat runs through an environment, large-amplitude theta oscillations (4–10 Hz) reliably appear in the hippocampus''s electrical activity. The consistency of this pattern led to theta playing a central role in theories on the neural basis of mammalian spatial navigation and memory. However, in fact, hippocampal oscillations at 4–10 Hz are rare in humans and in some other species. This presents a challenge for theories proposing theta as an essential component of the mammalian brain, including models of place and grid cells. Here, I examine this issue by reviewing recent research on human hippocampal oscillations using direct brain recordings from neurosurgical patients. This work indicates that the human hippocampus does indeed exhibit rhythms that are functionally similar to theta oscillations found in rodents, but that these signals have a slower frequency of approximately 1–4 Hz. I argue that oscillatory models of navigation and memory derived from rodent data are relevant for humans, but that they should be modified to account for the slower frequency of the human theta rhythm.  相似文献   

17.
Effects of GABA and its agonists baclofen and muscimol on the background spike activity of single hippocampal neurons were studied in rat brain slices using an intracellular recording technique. Interneurons localized in thestratum alveus-oriens and pyramidal neurons of thestratum pyramidale showed high sensitivity to GABA (mean ID50=65 µM and 40 µM, ranges 10–140 µM and 3–200 µM), baclofen (ID50=2.6 µM and 3.5 µM, ranges 0.6–20.0 µM and 0.4–30.0 µM), and muscimol (ID50=0.85 µM and 0.21 µM, ranges 0.11–4.0 µM and 0.05–0.45 µM, respectively). Responses of hippocampal neurons to application of GABA or either of its agonists were predominantly inhibitory. A part of interneurons (30%) differed from pyramidal neurons in their irresponsivity or low sensitivity to baclofen applications. GABA- or muscimol-induced inhibition of spike activity in many pyramidal cells was preceded by a short-lasting excitation. Our findings indicate that a part of hippocampal interneurons are very poorly supplied with GABAb receptors. Inhibition of pyramidal cells evoked by activation of GABAa receptors probably develops against the background of accompanying depolarization, which in some cases can result in a provisional excitation of these neurons. The excitatory effects of GABA on the pyramidal cells are mediated by GABAa receptors.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 36–44, January–February, 1995.  相似文献   

18.
Summary A qualitative and quantitative analysis was performed on the EEG background activity in 62 Danish girls and women with Turner's syndrome (30 with karyotype 45,X and 32 with other karyotypes) whose ages ranged from 6 to 47 years (87% were aged 15 years or more) and age-matched controls. The pooled data and a case-control study showed characteristic features in Turner subjects, including: (1) more rapid frequency, larger amplitude and lower amount of alpha waves, (2) higher amount of theta waves, (3) larger amplitude and higher amount of delta waves and (4) larger amplitude and higher amount of beta waves than in controls. These findings in Turner subjects were more pronounced in the left hemisphere, and more typical, except for the amplitude in alpha waves, in Turner subjects with 45,X than in those with other karyotypes. The effects of advancing age on the EEG background activity observed in controls — including more rapid frequency, decreased amplitude and amount of alpha waves, increased amount of theta and delta waves, and increased amount of beta waves, particularly after 35 years of age — were found in some Turner subjects. Hemispheric differences with higher activity (i.e. more rapid frequency, larger amplitude and higher amount of alpha waves, particularly at Fp1 and F3, and, inversely, lower amount of theta or delta waves) at P3, T3, T5 and O2 than at the opposite side were found in many Turner subjects. However, these findings were not specific for Turner subiects, since the same hemispheric differences were also observed much more markedly in controls. These topographic distributions with hemispheric differences did not provide evidence for hypofunction in the temporo-parieto-occipital tertiary area of the right hemisphere in Turner subjects, though this had been expected on the basis of neuropsychological examinations. Our findings, including transiently appearing brain hypofunction at the parietal, temporal and occipital areas, most often in the right hemisphere, indicate a relationship between the chromosomal constitution 45,X and EEG background activity. They suggest the presence of functional brain disturbance in the thalamus and in the ascending reticular activating system, which tends to disturb the thalamo-cortical circuit. Further studies, including topographic and sequential power spectrum analysis of EEG background activity, 24-h continuous EEG recording, blood flow studies (positron computerized tomography) and neuropathological examination, may be needed.Tables I-VI are available on request  相似文献   

19.
1.  During courtship behavior, males of the fiddler crab, Uca pugilator, drum on the ground with their large chela. The types of waves this produces and some of their properties were investigated using a laser Doppler vibrometer and accelerometers under field and laboratory conditions.
2.  Rhythmical impact onto the substratum by Uca produces 3 types of surface waves: Rayleigh waves and Love waves which contain most of the energy, and the weaker surface P-waves.
3.  The group velocity of Love-waves is 50–60 m/s in wet sand. Rayleigh waves travel at 70–80 m/s in wet sand and obout 40 m/s in dry sand. The propagation velocity of surface P-waves is 150–160 m/s in compact wet sand and about 140 m/s in wet sand perforated by crab burrows. The group velocity of Rayleigh and Love waves is not influenced by the presence of crab burrows.
4.  Fast Fourier transform (FFT) spectra of single beats reveal that the energy maxima of Rayleigh and Love waves lie in the frequency range of 340–370 Hz, i.e., at much higher frequencies than the beat rate of the fiddler crabs, which is usually below 40/s. The optimal frequency is independent of the distance from the signalling male.
5.  In the optimal frequency range, the specific damping coefficient 10 for Rayleigh waves is very low and amounts to 0.13–0.16 dB/cm in wet sand and 0.23–0.49 dB/cm in dry sand. Substrate vibrations of higher frequencies are more strongly damped.
6.  Considering the size of a fiddler crab, the physical properties of the Rayleigh and Love waves in the optimal frequency range provide a suitable signal for localizing mechanisms which rely on time or phase differences but not on intensity or spectral differences of propagating substrate vibrations.
In partial fulfillment of the requirements for the Dr. rer. nat. degree, University of Konstanz.  相似文献   

20.
Summary The effect of temperature on the response properties of primary auditory fibres in caiman was studied. The head temperature was varied over the range of 10–35 ° C while the body was kept at a standard temperature of 27 °C (Ts). The temperature effects observed on auditory afferents were fully reversible. Below 11 °C the neural firing ceased.The mean spontaneous firing rate increased nearly linearly with temperature. The slopes in different fibres ranged from 0.2–3.5 imp s–1 °C–1. A bimodal distribution of mean spontaneous firing rate was found (<20 imp s–1 and >20 imp s–1 at Ts) at all temperatures.The frequency-intensity response area of the primary fibres shifted uniformly with temperature. The characteristic frequency (CF) increased nearly linearly with temperature. The slopes in different fibres ranged from 3–90 Hz °C–1. Expressed in octaves the CF-change varied in each fibre from about O.14oct °C–1 at 15 °C to about 0.06 oct °C–1 at 30 °C, irrespective of the fibre's CF at Ts. Thresholds were lowest near Ts. Below Ts the thresholds decreased on average by 2dB°C–1, above Ts the thresholds rose rapidly with temperature. The sharpness of tuning (Q10db) showed no major change in the temperature range tested.Comparison of these findings with those from other lower vertebrates and from mammals shows that only mammalian auditory afferents do not shift their CF with temperature, suggesting that a fundamental difference in mammalian and submammalian tuning mechanisms exists. This does not necessarily imply that there is a single unifying tuning mechanism for all mammals and another one for non-mammals.Abbreviations BF best frequency: frequency of maximal response at an intensity 10 dB above the CF-threshold - CF characteristic frequency - FTC frequency threshold curve, tuning curve - T s standard temperature of 27 °C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号