首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the origin of the ventral pancreas, a fate map of the ventral pancreas was constructed using DiI crystal or CM-DiI to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. First, the region lateral to the 7- to 9-somite level, which has been reported to contribute to the ventral pancreas, was shown to contribute mainly to the intestine or the dorsal pancreas. At the 10 somite stage (ss), the ventral pre-pancreatic cells reside laterally at the 2-somite level, at the lateral boarder of the somite. At this stage, however, the fate of these cells has not yet segregated and they contribute to the ventral pancreas and to the intestine or bile duct. The ventral pancreas fate segregated at the 17 ss; the cells residing at the somite boarder at the 4-somite level at the 17 ss were revealed to contribute to the ventral pancreas. Interestingly, the dorsal and the ventral pancreatic buds are different in both origin and function. These two pancreatic buds begin to fuse at day 7 (HH 30) of embryonic development. However, whereas the dorsal pancreas gives rise to both Insulin-expressing endocrine and Amylase-expressing exocrine cells, the ventral pancreas gives rise to Amylase-expressing exocrine cells, but not insulin-expressing endocrine cells before day 7 (HH 30) of embryonic development.  相似文献   

2.
An investigation into the development of the Vervet monkey endocrine pancreas revealed a sequence of occurrence of pancreatic peptides that differed from previous reports in mice, dog and human with PP and somatostatin occurring before glucagon and insulin. All four pancreatic peptides were identified, immunohistochemically, in only one of the pancreatic primordial buds, before fusion of the two buds to form the pancreas. This questions the hypothesis that the heterogeneous endocrine cell distribution seen in the adult pancreas is due to the contribution of only PP cells by the ventral bud and non-PP cells by the dorsal bud. Co-localization of glucagon and PP was observed extensively in the developing pancreas and the predominant expression of one over the other in an apparently organized non-random manner accounted for the glucagon- and PP-rich areas seen in the developing pancreas. A small number of cells immunoreactive to glucagon and PP were also observed in the adult. Reports of plasticity of differentiation of other pancreatic cells led us to investigate regeneration potential of the adult monkey pancreas. Partial obstruction of the Vervet monkey main pancreatic duct, by cellophane wrapping, resulted in duct cell proliferation and differentiation to form new endocrine tissue in a way that mimics normal organogenesis. Focal areas of hepatocytes were found in the regenerated pancreas of one monkey, illustrating further the latent developmental capabilities of adult pancreas cells. These findings could lead to interesting new therapies for pancreas and liver disease.  相似文献   

3.
The ventral and the dorsal parts of the rat pancreas were perfused separately via either the superior mesenteric artery (0.6 ml/min) or the coeliac artery (1.4 ml/min). Control perfusions were performed via both arteries (2 ml/min). Expressed relative to the weight of tissue, the insulin content was comparable in the ventral and dorsal parts whereas the glucagon content was 2.5 times lower in the ventral than dorsal part. In comparison to the dorsal or total pancreas, the insulin secretory activity of the ventral pancreas was markedly decreased in response to either an elevation of the glucose concentration or the administration of carbamylcholine or arginine. The difference between the ventral and dorsal response was less marked at low glucose concentrations (3.3 or 7.0 mmol/l) and, possibly, in response to glucagon. In the case of glucagon release, a decreased response of the ventral pancreas was only observed when glucagon output was fully stimulated by the administration of arginine at a low glucose concentration. These results indicate that the B cell in the ventral pancreas responds poorly to several stimuli. There was little evidence to support the involvement of endogenous glucagon in the diminished sensitivity of the ventral B cells.  相似文献   

4.
The origins of liver progenitor cells have been extensively studied, but evidence on the origin of pancreatic precursor cells is currently limited. Pancreatic and duodenal homeobox gene 1 (Pdx1) is one of the earliest known markers for the pancreas. A transgenic mouse line expressing green fluorescent protein (GFP) under the control of the Pdx1 promoter showed that Pdx1/GFP expression was first observed in the mid-region of the anterior intestinal portal (AIP) lip at embryonic day (E) 8.5 at the 5-6 somite stage (ss). The liver progenitors were confirmed to originate from separate domains at the lateral endoderm and the inner part of the medial AIP as previously reported (Tremblay and Zaret, 2005), which turned out to lie caudally to the Pdx1/GFP-expressing domain. To confirm if the early Pdx1/GFP-positive cells give rise to the pancreatic bud, we labeled the cells on the lip of the AIP using the carbocyanine dye CM-DiI and traced their fates in 1-4 ss, 5-6 ss and 7-9 ss E8.5 embryos using an ex utero whole embryo culture method. At 1 ss, the ventral pancreas progenitors were observed in the lateral endoderm, not yet being segregated from the liver or gut progenitors. Cells that contributed solely to the ventral pancreas first appeared at the AIP lip from 5 ss. At 5-6 ss, cells from the medial of the AIP lip contributed to the ventral pancreas. The pancreas fate region become narrower as development progresses. At 7-9 ss, the cells contributing to the ventral pancreas resided in a narrow region of the AIP lip. From 5 ss, the right flanking region contributes to the posterior gut, and the left flanking region contributes to the anterior gut. Dorsal pancreatic progenitors originate from the dorsal endoderm at the 3-6 somite level at 7-9 ss, though they have not yet diverged from the dorsal gut progenitors at this stage.  相似文献   

5.
Ku SK  Lee JH  Lee HS 《Tissue & cell》2000,32(1):58-65
The distributions and relative frequencies of insulin-, glucagon- and somatostatin-immunoreactive cells were studied in dorsal, ventral, third and splenic lobes of developing chicken pancreas during embryonic periods (10 days of incubation to hatching) by immunohistochemical methods. The regions of pancreas were subdivided into three regions: exocrine, light and dark islet. Round, oval and spherical shaped immunoreactive cells were detected in all four lobes. According to developmental stages, the types of lobes and the regions of pancreas showed various distributions and relative frequencies. In the splenic lobes, insulin, glucagon and somatostatin-immunoreactive cells were detected in exocrine, dark islet and light islet from time differentiation of splenic lobes, 13 days of incubation. The insulin- and somatostatin-immunoreactive cells of the third lobes were detected in exocrine and light islets from 10 days of incubation, and in dark islets from 15 and 11 days of incubation respectively. Glucagon-immunoreactive cells were detected in exocrine, dark and light islets from 16, 11 and 19 days of incubation respectively. These immunoreactive cells of the ventral lobes were detected in exocrine and light islets. However, dark islets were not found in this lobe. Insulin-immunoreactive cells were demonstrated from 10 days of incubation in these two regions. Glucagon-immunoreactive cells were detected from 17 days of incubation in exocrine and 16 days of incubation in the light islets. Somatostatin-immunoreactive cells were demonstrated from 11 days of incubation in exocrine and 14 days of incubation in the light islets. In the dorsal lobes, insulin-immunoreactive cells were demonstrated in exocrine, dark and light islets from 12, 14, and 13 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were detected in dark and light islets from 13 and 14 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were demonstrated from 10 and 11 days of incubation in exocrine respectively. Generally, insulin-immunoreactive cells were increased in light islets but decreased in light islets with developmental stages. However, glucagon-immunoreactive cells were decreased in light islets but increased in dark islets. In addition, somatostatin-immunoreactive cells showed the same frequencies in light and dark islets with developmental stages except exocrine which increased with developmental stages.  相似文献   

6.
四爪陆龟消化、呼吸系统的解剖   总被引:3,自引:1,他引:3  
四爪陆龟(Testudohorsfieldi)的消化管总长度为体长的4.5—4.8倍。喙缘锋利,硬腭侧缘具细齿,舌不伸出口,食道扩展性强,胃呈囊状,被肝叶覆盖,小肠较长,盲肠发达。肝较大,重18.3g,分左叶、中叶和右叶,绿色胆囊位于右肝两小叶间。胰腺长条形,分布于十二指肠内。肺长囊形,紧贴在背甲的内表面,位于肩带和腰带之间。气管较短由15-20个软骨环组成,支气管较长由70个左右的软骨环组成。  相似文献   

7.
To better understand the relationship between the endocrine and exocrine cell types in the Xenopus pancreas, we have cloned the Xenopus amylase cDNA and compared its expression profile with that of four other pancreatic markers: insulin, glucagon, elastase and trypsinogen. Our results demonstrate that the first pancreatic marker to be expressed is insulin, exclusively in the dorsal pancreas. These insulin-expressing cells form small groups which resemble islets, but no insulin is detected in the ventral pancreas until stage 47. In contrast, the exocrine markers, amylase, elastase and trypsinogen are first expressed only in the ventral pancreas beginning at stage 41; by stage 45 their expression extends into the dorsal pancreas. Glucagon, on the other hand, is not expressed in the pancreas until stage 45. In the endocrine cell clusters we do not find glucagon-expressing cells surrounding insulin-expressing cells, either in the tadpole or in the mature frog pancreas.  相似文献   

8.
The structure of nuclei and nucleoli of hepatic cells after short-term ethionine administration was investigated with the electron microscope. By 1½ hr after the injection, a distinct alteration occurred in the nucleoli which was characterized by the appearance of electron-opaque masses in the nucleolonema. After 6–8 hr, the nucleoli showed partial fragmentation into small, dense masses. Large aggregates of interchromatinic granules appeared in the nucleoplasm. Condensation of chromatin became prominent in the nucleoplasm particularly along the nuclear membrane. By 12 hr almost complete fragmentation of nucleoli had occurred. The administration of adenine or methionine at 4 hr prevented the development of nucleolar changes. Also, adenine administration at 8 hr after ethionine completely reversed the nucleolar lesion by 12 hr. After methionine administration at 8 hr, many nucleoli showed incomplete reconstruction with many twisted ropelike structures when viewed 4 hr later. Identical structures were found when adenine was given at 8 hr, and animals were sacrificed 2 hr later. On the basis of this observation, the simplified structures of nucleoli found 2 hr after adenine or 4 hr after methionine appeared to be precursors of the nucleolonema. It is suggested that nucleoli show at least two basic reaction patterns to inhibitors of RNA synthesis, one typified by actinomycin D and one by ethionine.  相似文献   

9.
Studies of the temporal sequence of mammalian pancreas development have demonstrated the existence of a protodifferentiated state that is characterized by low constant levels of amylase specific activity. In order to investigate this state further, guts from 9-day mouse embryos were cultured for 3 days, during which a protodifferentiated dorsal pancreas formed, consisting of a neck region or duct that extended from the intestinal wall and terminated in a large bulb of tissue. The pancreas bulb was then removed, leaving only the duct. This day corresponded to Day 12 of gestation. During 5 days of additional culture, 37 of 43 ducts regenerated a pancreas with an amylase specific activity equal to that of control pancreas (2.4 μg of maltose hydrate released/min/μg of protein at 37°C). Guts placed in culture at 12 days, with removal of the pancreas the same day, gave similar results. Other combinations of starting embryonic age plus culture time, prior to pancreas removal, totaling 12 or 13 days also underwent regeneration. Only of 18 pancreases regenerated from ducts equivalent to 14 days of gestation. Removal of the stomach, the intestine, and the ventral pancreas did not affect the ability of the dorsal pancreas to regenerate. However, removal of the duct at the presumptive intestinal wall did not result in regeneration. Regenerated pancreas differentiation was further confirmed by electron microscopic demonstration of zymogen granules in exocrine cells and of at least two types of secretory granules in endocrine cells. The results demonstrate that the protodifferentiated duct can regenerate a new pancreas including both exocrine and endocrine tissue, and that the regenerated pancreas is not retarded in its development when compared with the control pancreas.  相似文献   

10.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

11.
Ponery AS  Adeghate E 《Peptides》2000,21(10):1503-1509
Neuropeptides modulate the function of classic neurotransmitters in the regulation of body function. The role of neuropeptides in the regulation of endocrine secretion from the pancreas of diabetic rat is poorly understood. This study examined the pattern of distribution of neuropeptide-Y (NPY) and substance P (SP) in normal and diabetic rat pancreases. In addition to this, the effect of NPY and SP on glucagon secretion was also examined in the pancreases of normal and diabetic rats. Four weeks after the induction of diabetes, the pancreaseses of normal and diabetic rats were removed and processed for immunohistochemistry and glucagon secretion. The pattern of distribution of glucagon in the pancreas of diabetic rat was conspicuously deranged after the onset of diabetes. The pattern of distribution of NPY and SP was, however, similar in the pancreases of both normal and diabetic rats. Stimulation of normal rat pancreatic tissue with NPY (10(-12) and 10(-9) M) evoked large and significant (P < 0.001) increases in glucagon secretion compared to basal. In contrast to this, NPY inhibited glucagon secretion from the pancreas of diabetic rat. Treatment of pancreatic tissue fragments of normal rat with 10(-9) M SP resulted in significant (P < 0.03) increases in glucagon secretion. SP inhibited glucagon secretion from diabetic rat pancreas. In conclusion, NPY and SP stimulated glucagon secretion from the pancreas of normal rat. In contrast, NPY and SP inhibited glucagon secretion from diabetic rat pancreas.  相似文献   

12.
The processes of formation of two pigmented cells, the statocyte and the ocellar pigment cell, in the cerebral vesicle of larvae of the ascidian Styela plicata were investigated in whole mount specimens and serial paraffin sections by light microscopy. The pigmentations of the two cells became visible simultaneously in embryos at the stage of tail elongation, 5–6 hr after fertilization. The pigmented cells were at first located side by side in the dorsal wall of the neurocoel. Growth of the pigment mass in the ocellus ceased at about 6.5 hr, while that in the statocyte continued through the hatching period (9–10 hr) up to the swimming stage. The pigment mass in the statocyte consisted of two blocks which joined together during their growth. The statocyte migrated from the dorsal to the ventral wall of the cerebral vesicle by the swimming stage. In swimming larvae, the more ventral of the two pigment blocks of the statocyte formed an inverted pigment cup and a cluster of protuberances projected into it from the ventral wall of the cerebral vesicle. Phylogenetically, the sensory organs in the cerebral vesicle of Styela plicata seem intermediate between those in Pyuridae and Botryllinae with respect of their structure and process of differentiation.  相似文献   

13.
The pancreas develops from dorsal and ventral epithelial extensions at the foregut/midgut boundary in Xenopus embryos. Endocrine and exocrine specification is thought to occur from a pool of uniform precursor cells. While the genetic network controlling endocrine specification and differentiation has been the object of extensive investigations, the corresponding mechanism leading to the exocrine pancreas is much less understood. Here, we report on the identification and characterisation of a novel molecular marker for the early exocrine pancreas in Xenopus embryos. Xenopus pancreatic protein disulfide isomerase is expressed in both dorsal and ventral pancreatic buds. By whole mount in situ hybridization it is detected as early as stage 39 in the exocrine lineage of the developing pancreas; RT-PCR reveals onset of expression as early as stage 35/36.  相似文献   

14.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

15.
文章研究了在实验室条件下齐口裂腹鱼仔稚鱼耳石早期形态发育与生长特点、第一轮纹出现时间和轮纹沉积规律。结果表明: 在13.5-17.2℃孵化条件下,微耳石和矢耳石在出膜前形成,而星耳石于出膜后第12天出现。在仔稚鱼生长过程中,微耳石由近圆形发育成贻贝形,矢耳石经历近圆形、锲形后发育为箭矢状,星耳石形状由近圆形发育为星芒状。微耳石的前区、背区和腹区及矢耳石的背区和腹区生长呈幂函数关系,而微耳石的后区、矢耳石前区和后区生长以及两对耳石的前后区半径之和与全长均呈线性相关。在(18.50.5)℃和(15.61.1)℃条件下,50%矢耳石样本第一轮纹均在出膜后第 2 天形成(分别为出膜后18h和19h),以后每天形成一轮。微耳石和矢耳石轮纹数均与日龄呈线性相关,方程斜率均与1差异不显著(P0.05),表明两对耳石的轮纹沉积均为日周期性。这些结果为研究齐口裂腹鱼野生种群繁殖期和早期生活史特征等生态学问题提供了重要依据。  相似文献   

16.
The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2-4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification.  相似文献   

17.
Summary The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostain- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

18.
在两栖类爪蟾胚胎发育中,由受精引起的皮层转动造成了受精卵的背腹极性。为了研究受精卵细胞质的不均一分布对胚胎体轴形成的影响,我们进行了16细胞期动物极背、腹方裂球的外植和异位移植实验。16细胞期的动物极背方裂球在外植和移植到腹方位置后都表现出背方特征,如外植块培养到原肠中期时伸长,背方裂球在移植到腹方后引发第二体轴等;而16细胞期动物极腹方裂球移植到背方后其发育命运则遵循背方裂球的命运,参与背方结构的形成。我们认为在16细胞期,动物极背、腹方的裂球由于包含着不同的卵质,因而在发育能力上已经具有背、腹的差异。  相似文献   

19.
真水狼蛛胚胎发育过程中形态和主要化学物质含量的变化   总被引:3,自引:0,他引:3  
彭宇  胡萃  赵敬钊  陈建 《动物学报》2001,47(2):190-195,T001
采用常规石蜡切片和液体石蜡透明卵壳的方法,系统地观察了真水狼蛛的胚胎早期,体节期,胚胎速转期和幼虫期4个发育阶段的形态特征和发育过程,并测定了胚胎发育过程中卵的内主要化学物质含量的变化,在28度时,真水狼蛛的卵从产卵到孵化共需144小时,其中胚胎早期42小时,体节期33小时,胚胎逆转期27小时,在胚胎逆转期后进入前幼虫期,前幼虫期42小时,真水狼蛛的胚胎逆转现象很明显,表明真水狼蛛的进化程度较高,在胚胎发育过程中,卵的含水量,含脂量和卵重在胎发育24hr后开始下降,卵的蛋白质含量在48小时后也开始下降,含糖量下降不明显。  相似文献   

20.
By immunofluorescence on cytospin preparations and on semithin sections of mouse pancreatic buds, we have found glucagon and pancreatic polypeptide (PP)-containing cells at embryonal day 10.5 (E 10.5) in dorsal buds and at E 11.5 in ventral buds. Insulin-containing cells appear in dorsal buds at E 11.5, and one to two days later in ventral buds. Somatostatin-containing cells are detectable from E 13.5 in both dorsal and ventral buds. A quantitative analysis shows that up to E 15.5, PP-containing cells are relatively abundant in both buds. By PCR amplification of oligo(dT)-primed cDNAs prepared from total pancreatic RNA, we also detect PP mRNA from E 10.5 onwards, thus confirming the early expression of the PP gene in the developing mouse pancreas. Analysis of endocrine cells in situ suggests three major patterns of cell distribution in embryonic pancreas. First, individual hormone-containing cells are located within the epithelium of pancreatic ducts. In both dorsal and ventral buds, the majority of these endocrine cells contain PP, but many also contain glucagon, insulin or somatostatin. Secondly, clusters of endocrine cells are found in the pancreatic interstitium. Many of these cells contain both glucagon and PP which, by immunogold labelling of consecutive thin sections, can be shown to co-exist within individual secretory granules. Finally, starting on E 18.5, typical islets are formed with centrally located B cells and with the adult 'one cell-one hormone' phenotype. These results suggest an intriguing ontogenic relationship between A- and PP-cells, and also indicate that PP-containing cells may occupy a hitherto unexpected place in the lineage of endocrine islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号