首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3?D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2–β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the “transition zone” may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs.

Communicated by Ramaswamy H. Sarma  相似文献   


2.
Summary 1. Chronic administration of nicotine up-regulates mammalian neuronal nicotinic acetylcholine receptors (nAChRs). A key hypothesis that explains up-regulation assumes that nicotine induces desensitization of receptor function. This is correlated with behaviorally expressed tolerance to the drug.2. The present experiments were conducted to: (a) obtain information on the nicotine-induced desensitization of neuronal nAChR function, a less understood phenomenon as compared to that of the muscle and electric fish receptor counterparts; (b) test the hypothesis that different receptor subunit combinations exhibit distinct desensitization patterns.3.Xenopus laevis oocytes were injected with mRNAs encoding rat receptor subunits2,3, or4 in pairwise combination with the2 subunit. The responses to various concentrations of acetylcholine (ACh) or nicotine were analyzed by the two electrode voltage clamp technique.4. Concentration-effect curves showed that nicotine was more potent than ACh for all the receptor subunit combinations tested. Only the42 combination exhibited a depression of the maximum effect at concentrations higher than 20µM nicotine.5. After a single nicotine pulse, receptor desensitization (calculated as a single exponential decay) was significantly slower for42 than for either32 or22.6. Concentrations of nicotine that attained a near maximum effect were applied, washed, and re-applied in four minute cycles. The responses were calculated as percentages of the current evoked by the initial application. Following 16 minutes of this protocol, the42 combination showed a greater reduction of the original response as compared to the22 and32 subunit combinations. Taking points 5 and 6 together, these experiments suggest that the42 receptor subtype desensitizes at a slower rate and remains longer in the desensitized state.7. Because42 is the main receptor subunit combination within the brain and is up-regulated by nicotine, our data may be important for understanding the molecular basis of tolerance to this drug.  相似文献   

3.
Evolution of nicotinic acetylcholine receptor subunits   总被引:7,自引:0,他引:7  
A phylogenetic tree of a gene family of nicotinic acetylcholine receptor subunits was constructed using 84 nucleotide sequences of receptor subunits from 18 different species in order to elucidate the evolutionary origin of receptor subunits. The tree constructed showed that the common ancestor of all subunits may have appeared first in the nervous system. Moreover, we suggest that the alpha 1 subunits in the muscle system originated from the common ancestor of alpha 2, alpha 3, alpha 4, alpha 5, alpha 6, and beta 3 in the nervous system, whereas the beta 1, gamma, delta, and epsilon subunits in the muscle system shared a common ancestor with the beta 2 and beta 4 subunits in the nervous system. Using the ratio (f) of the number of nonsynonymous substitutions to that of synonymous substitutions, we predicted the functional importance of subunits. We found that the alpha 1 and alpha 7 subunits had the lowest f values in the muscle and nervous systems, respectively, indicating that very strong functional constraints work on these subunits. This is consistent with the fact that the alpha 1 subunit has sites binding to the ligand, and the alpha 7-containing receptor regulates the release of the transmitter. Moreover, the window analysis of the f values showed that strong functional constraints work on the so-called M2 region in all five types of muscle subunits. Thus, the window analysis of the f values is useful for evaluating the degree of functional constraints in not only the entire gene region, but also the within-gene subregion.   相似文献   

4.
5.
The nicotinic acetylcholine receptor from Torpedo was immobilised in tethered membranes. Surface plasmon resonance was used to quantify the binding of ligands and antibodies to the receptor. The orientation and structural integrity of the surface-reconstituted receptor was probed using monoclonal antibodies, demonstrating that approximately 65% of the receptors present their ligand-binding site towards the lumen of the flow cell and that at least 85% of these receptors are structurally intact. The conformation of the receptor in tethered membranes was investigated with Fourier transform infrared spectroscopy and found to be practically identical to that of receptors reconstituted in lipid vesicles. The affinity of small receptor ligands was determined in a competition assay against a monoclonal antibody directed against the ligand-binding site which yielded dissociation constants in agreement with radioligand binding assays. The presented method for the functional immobilisation of the nicotinic acetylcholine receptor in tethered membranes might be generally applicable to other membrane proteins.  相似文献   

6.
The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min. The alpha-subunit is not overproduced, as all detectable pulse-labeled alpha-subunit can be chased into the oligomeric complex, suggesting that AChR assembly in this system is an efficient process. The rate of AChR assembly is decreased by metabolic inhibitors and by monensin, an ionophore that impairs the Golgi apparatus. We have observed that the gamma- and delta-subunits of AChR are phosphorylated in vivo. The delta-subunit is more highly phosphorylated in the unassembled than in the assembled state, indicating that its phosphorylation precedes assembly and that its dephosphorylation is concomitant with AChR assembly. These findings suggest that subunit assembly occurs in the Golgi apparatus and that phosphorylation/dephosphorylation mechanisms play a role in the control of AChR subunit assembly.  相似文献   

7.
Oligomerization of complete and incomplete combinations of rat muscle-type nicotinic acetylcholine receptor (nAChR) subunits in Xenopus oocytes was studied by blue native PAGE and compared with acetylcholine-activated current in these cells. The rank order of expression level judged by current was alpha 1 beta 1 gamma delta > alpha 1 beta 1 gamma > alpha 1 beta 1 delta > alpha 1 gamma delta > alpha 1 delta > alpha 1 gamma. alpha 1 and alpha 1 beta 1 were not functional. Protein complexes incorporating a heptahistidyl-tagged alpha 1 subunit were chromatographically purified from digitonin extracts of oocytes and resolved by blue native PAGE. In the absence of any co-expressed nAChR subunit, the majority of alpha 1 formed aggregates. Co-expression of beta 1 had no effect on alpha 1 aggregation, whereas both gamma and delta diminished alpha 1 aggregation in favor of discrete oligomers: alpha 1 formed tetramers together with gamma and dimers, trimers, and tetramers together with delta. When alpha 1 gamma was complemented with beta 1 to form a functional alpha 1 beta 1 gamma receptor, a small amount of a pentamer was found besides a prominent alpha 1-His7 beta 1 gamma trimer. Expression of the functional alpha 1 beta 1 delta receptor yielded marked amounts of a pentamer besides dimers and trimers. These results are discussed in terms of the assembly model of Green and Claudio (Cell 74, 57-69, 1994), substantiating that blue native PAGE is suited for the investigation of ion channel assembly.  相似文献   

8.
9.
10.
Labeling of the BC3H1 muscle-like cell line with [3H] palmitate, followed by immunoprecipitation of the acetylcholine receptor, indicated that the alpha and beta subunits of the receptor contain covalently bound fatty acid. After acid hydrolysis, fatty acid methyl esters could be recovered from the isolated [3H]palmitate-labeled alpha subunit. Treatment of differentiated BC3H1 cells with cerulenin, an inhibitor of fatty acid and sterol synthesis and fatty acid acylation of proteins, resulted in a 50% inhibition in expression of the acetylcholine receptor on the cell surface under conditions where there was minimal inhibition of protein synthesis. We conclude that this previously undetected post-translational modification may play a role in assembly and/or surface expression of the acetylcholine receptor.  相似文献   

11.
The nicotinic acetylcholine (ACh) receptor belongs to a superfamily of synaptic ion channels that open in response to the binding of chemical transmitters. Their mechanism of activation is not known in detail, but a time-resolved electron microscopic study of the muscle-type ACh receptor had suggested that a local disturbance in the ligand-binding region and consequent rotations in the ligand-binding alpha subunits, connecting to the transmembrane portion, are involved. A more precise interpretation of this structural change is given here, based on comparison of the extracellular domain of the ACh receptor with an ACh-binding protein (AChBP) to which a putative agonist is bound. We find that, to a good approximation, there are two alternative extended conformations of the ACh receptor subunits, one characteristic of either alpha subunit before activation, and the other characteristic of all three non-alpha subunits and the protomer of AChBP. Substitution in the three-dimensional maps of alpha by non-alpha subunits mimics the changes seen on activation, suggesting that the structures of the alpha subunits are modified initially by their interactions with neighbouring subunits and switch to the non-alpha form when ACh binds. This structural change, which entails 15-16 degrees rotations of the inner pore-facing parts of the alpha subunits, most likely acts as the trigger that opens the gate in the membrane-spanning pore.  相似文献   

12.
Yeast expression vectors were constructed containing complementary DNA encoding the alpha-, beta-, gamma-, and delta-subunits of the Torpedo californica nicotinic acetylcholine receptor under the control of the Saccharomyces cerevisiae alcohol dehydrogenase promoter. All four plasmids were integrated into the yeast genome of a single yeast cell. The resulting yeast strain synthesized polypeptides novel to yeast that had the molecular weights and antigenic properties similar to the authentic T. californica receptor alpha-, gamma, and delta-subunits. The beta-subunit polypeptide could not be detected in this yeast strain, even though the poly(A)+ RNA from this strain contained all the information necessary for the expression of functional acetylcholine receptors in Xenopus laevis oocytes. The replacement of the beta-subunit mRNA 5'-untranslated leader and its N-terminal signal sequence by the corresponding alpha-subunit sequences, however, resulted in the expression of the beta-subunit polypeptide in yeast grown at 5 degrees C.  相似文献   

13.
14.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

15.
16.
Brain nicotinic acetylcholine receptors (nAChRs) are made up of protein subunits that differ from those constituting muscle nAChRs. To characterize the physiological properties of one class of avian brain nicotinic receptor, we injected the nuclei of Xenopus oocytes with full-length cDNAs for the ligand binding (alpha 4) and structural (n alpha) subunits. Injected oocytes had large ACh-induced currents in the microampere range that were insensitive to alpha-bungarotoxin, as expected for neuronal nAChRs. We found that these brain nAChRs incorporate at least two alpha 4 subunits and that their functional properties differ from muscle nAChRs in at least two respects: the elementary conductance is considerably smaller (20 pS), and channels in outside out patches stop functioning within a few minutes.  相似文献   

17.
The subunits of the muscle-type nicotinic acetylcholine receptor (AChR) are not uniformly oriented in the resting closed conformation: the two α subunits are rotated relative to its non-α subunits. In contrast, all the subunits overlay well with one another when agonist is bound to the AChR, suggesting that they are uniformly oriented in the open receptor. This gating-dependent increase in orientational uniformity due to rotation of the α subunits might affect the relative affinities of the two transmitter binding sites, making the two affinities dissimilar (functionally non-equivalent) in the initial ligand-bound closed state but similar (functionally equivalent) in the open state. To test this hypothesis, we measured single-channel activity of the αG153S gain-of-function mutant receptor evoked by choline, and estimated the resting closed-state and open-state affinities of the two transmitter binding sites. Both model-independent analyses and maximum-likelihood estimation of microscopic rate constants indicate that channel opening makes the binding sites' affinities more similar to each other. These results support the hypothesis that open-state affinities to the transmitter binding sites are primarily determined by the α subunits.  相似文献   

18.
19.
Cholesterol effects on nicotinic acetylcholine receptor   总被引:2,自引:0,他引:2  
  相似文献   

20.
G Yellen  J C Migeon 《Gene》1990,86(2):145-152
We have produced the four subunits of the nicotinic acetylcholine receptor of Torpedo californica, an integral membrane protein, in the yeast Saccharomyces cerevisiae. Two of the subunits (alpha and delta) were readily produced from their cDNAs after simply subcloning them into a yeast shuttle vector adjacent to a yeast promoter. The other two protein subunits (beta and gamma) were not produced by this strategy, although the amounts of mRNA produced from these expression constructs are similar to those for alpha and delta. Replacing the DNA coding for the normal N-terminal signal sequences for the beta and gamma subunits with DNA coding for the signal sequence of yeast invertase results in successful protein synthesis. The yeast signal sequence allows these subunits to be translocated across the membrane of the endoplasmic reticulum and to be glycosylated. The appropriate final size of the subunit proteins suggests that the yeast signal sequence has been properly cleaved after translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号