首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Induction of motor neuron apoptosis by free 3-nitro-L-tyrosine   总被引:1,自引:0,他引:1  
Peroxynitrite-dependent tyrosine nitration has been postulated to be involved in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Evidence supporting this supposition includes the appearance of both free and protein-linked 3-nitro-l-tyrosine (nitrotyrosine) in both sporadic and familial ALS, as well as of increased free nitrotyrosine levels in the spinal cord of transgenic mice expressing ALS-linked superoxide dismutase mutants at symptom onset. Here we demonstrate that incubation with clinically relevant concentrations of nitrotyrosine induced apoptosis in motor neurons cultured with trophic factors. Nitrotyrosine was bound to proteins, but it was not incorporated into alpha-tubulin, as previously demonstrated for other cell types. Neither inhibition of nitric oxide production nor scavenging of superoxide and peroxynitrite prevented increases in cell nitrotyrosine immunoreactivity or motor neuron death, suggesting that these effects are not due to the endogenous formation of reactive nitrogen species. In contrast, some populations of astrocytes incorporated nitrotyrosine into alpha-tubulin, but free nitrotyrosine had no effect on the viability and phenotype of astrocytes in culture, as evaluated by glial fibrillary acidic protein immunoreactivity, cell growth and morphology. Co-culture of motor neurons on astrocyte monolayers delayed, but did not prevent, nitrotyrosine-induced motor neuron death. These results suggest that free nitrotyrosine may play a role in the induction of motor neuron apoptosis in ALS.  相似文献   

2.
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.  相似文献   

3.
Abstract: Superoxide dismutase (SOD) catalyzes the nitration of specific tyrosine residues in proteins by peroxynitrite (ONOO), which may be the damaging gain-of-function resulting from mutations to SOD associated with familial amyotrophic lateral sclerosis (ALS). We found that disassembled neurofilament-L (light subunit) was more susceptible to tyrosine nitration catalyzed by SOD in vitro. Neurofilament-L was selectively nitrated compared with the majority of other proteins present in brain homogenates. Assembled neurofilament-L was more resistant to nitration, suggesting that the susceptible tyrosine residues were protected by intersubunit contacts in assembled neurofilaments. Electrospray mass spectrometry of trypsin-digested neurofilament-L showed that tyrosine 17 in the head region and tyrosines 138, 177, and 265 in α-helical coil regions of the rod domain of neurofilament-L were particularly susceptible to SOD-catalyzed nitration. Nitrated neurofilament-L inhibited the assembly of unmodified neurofilament subunits, suggesting that the affected tyrosines are located in regions important for intersubunit contacts. Neurofilaments are major structural proteins expressed in motor neurons and known to be important for their survival in vivo. We suggest that SOD-catalyzed nitration of neurofilament-L may have a significant role in the pathogenesis of ALS.  相似文献   

4.
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.  相似文献   

5.
Neurofilaments and motor neuron disease   总被引:3,自引:0,他引:3  
Amyotrophic lateral sclerosis (ALS) is an adult-onset and heterogeneous neurological disorder that affects primarily motor neurons in the brain and spinal cord. Although multiple genetic and environmental factors might be implicated in ALS, the striking similarities in the clinical and pathological features of sporadic ALS and familial ALS suggest that similar mechanisms of disease may occur. A common and perhaps universal pathological finding in ALS is the presence of abnormal accumulations of neurofilaments (often called spheroids or Lewy body-like deposits) in the cell body and proximal axon of surviving motor neurons. Such neurofilament deposits have been widely viewed as a consequence of neuronal dysfunction, perhaps reflecting axonal transport defects. This review discusses the emerging evidence, based primarily on transgenic mouse studies and on the discovery of deletion mutations in a neurofilament gene associated with ALS, that neurofilament proteins can play a causative role in motor neuron disease.  相似文献   

6.
Liu D  Ling X  Wen J  Liu J 《Journal of neurochemistry》2000,75(5):2144-2154
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration.  相似文献   

7.
Tyrosine nitration is a widely used marker of peroxynitrite (ONOO(-)) produced from the reaction of nitric oxide with superoxide. Pfeiffer and Mayer (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) reported that superoxide produced from hypoxanthine plus xanthine oxidase in combination with nitric oxide produced from spermine NONOate did not nitrate tyrosine at neutral pH. They suggested that nitric oxide and superoxide at neutral pH form a less reactive intermediate distinct from preformed alkaline peroxynitrite that does not nitrate tyrosine. Using a stopped-flow spectrophotometer to rapidly mix potassium superoxide with nitric oxide at pH 7.4, we report that an intermediate spectrally and kinetically identical to preformed alkaline cis-peroxynitrite was formed in 100% yield. Furthermore, this intermediate nitrated tyrosine in the same yield and at the same rate as preformed peroxynitrite. Equivalent concentrations of nitric oxide under aerobic conditions in the absence of superoxide did not produce detectable concentrations of nitrotyrosine. Carbon dioxide increased the efficiency of nitration by nitric oxide plus superoxide to the same extent as peroxynitrite. In experiments using xanthine oxidase as a source of superoxide, tyrosine nitration was substantially inhibited by urate formed from hypoxanthine oxidation, which was sufficient to account for the lack of tyrosine nitration previously reported. We conclude that peroxynitrite formed from the reaction of nitric oxide with superoxide at physiological pH remains an important species responsible for tyrosine nitration in vivo.  相似文献   

8.
Based on previous findings of increased nitric oxide synthase (NOS) expression in human gliomas (4), we hypothesized that peroxynitrite, a highly reactive metabolite of nitric oxide (NO) and superoxide (O(*-)(2)), might be increased in these tumors in vivo. Here we demonstrate that nitrotyrosine (a footprint of peroxynitrite protein modification) is present in human malignant gliomas. Furthermore, we show that p53, a key tumor suppressor protein, has evidence of peroxynitrite-mediated modifications in gliomas in vivo. Experiments in vitro demonstrate that peroxynitrite treatment of recombinant wild-type p53 at physiological concentrations results in formation of higher molecular weight aggregates, tyrosine nitration, and loss of specific DNA binding. Peroxynitrite treatment of human glioma cell lysates similarly resulted in selective tyrosine nitration of p53 and was also associated with loss of p53 DNA binding ability. These data indicate that tyrosine nitration of proteins occurs in human gliomas in vivo, that p53 may be a target of peroxynitrite in these tumors, and that physiological concentrations of peroxynitrite can result in a loss of p53 DNA binding ability in vitro. These findings raise the possibility that peroxynitrite may contribute to loss of wild-type p53 functional activity in gliomas by posttranslational protein modifications.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder resulting from the degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. The cytopathological hallmark in the remaining motor neurons of ALS is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. In this paper we report that Dorfin, a RING finger-type E3 ubiquitin ligase, is predominantly localized in the inclusion bodies of familial ALS with a copper/zinc superoxide dismutase (SOD1) mutation as well as sporadic ALS. Dorfin physically bound and ubiquitylated various SOD1 mutants derived from familial ALS patients and enhanced their degradation, but it had no effect on the stability of the wild-type SOD1. The overexpression of Dorfin protected against the toxic effects of mutant SOD1 on neural cells and reduced SOD1 inclusions. Our results indicate that Dorfin protects neurons by recognizing and then ubiquitylating mutant SOD1 proteins followed by targeting them for proteasomal degradation.  相似文献   

10.
Peroxynitrite formation from macrophage-derived nitric oxide.   总被引:38,自引:0,他引:38  
Peroxynitrite formation by rat alveolar macrophages activated with phorbol 12-myristate 13-acetate was assayed by the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate. The inhibitor of nitric oxide synthesis N-methyl-L-arginine prevented the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate by stimulated macrophages, while Cu-depleted Zn superoxide dismutase did not catalyze the formation of 3-nitro-4-hydroxyphenylacetate either in vitro or in the presence of activated macrophages. The rate of phenolic nitration by activated macrophages was 9 +/- 2 pmol x 10(6) cells-1 x min-1 (mean +/- STD). Only 8% of synthetic peroxynitrite was trapped by superoxide dismutase, which suggested that the rate of peroxynitrite formation may have been as high as 0.11 nmol x 10(6) cells-1 x min-1. This upper estimate was consistent with N-methyl-L-arginine increasing the amount of superoxide detected with cytochrome c by 0.12 nmol x 10(6) cells-1 x min-1. The rate of nitrite and nitrate accumulation was 0.10 +/- 0.001 nmol x 10(6) cells-1 x min-1, suggesting that the majority of nitric oxide produced by activated macrophages may have been converted to peroxynitrite. The formation of a relatively long lived, strong oxidant from the reaction of nitric oxide and superoxide in activated macrophages may contribute to inflammatory cell-mediated tissue injury.  相似文献   

11.
Peripherin is a neuronal intermediate filament associated with inclusion bodies in motor neurons of patients with amyotrophic lateral sclerosis (ALS). A possible peripherin involvement in ALS pathogenesis has been suggested based on studies with transgenic mouse overexpressors and with a toxic splicing variant of the mouse peripherin gene. However, the existence of peripherin gene mutations in human ALS has not yet been documented. Therefore, we screened for sequence variants of the peripherin gene (PRPH) in a cohort of ALS patients including familial and sporadic cases. We identified 18 polymorphic variants of PRPH detected in both ALS and age-matched control populations. Two additional PRPH variants were discovered in ALS cases but not in 380 control individuals. One variant consisted of a nucleotide insertion in intron 8 (PRPH(IVS8)(-36insA)), whereas the other one consisted of a 1-bp deletion within exon 1 (PRPH(228delC)), predicting a truncated peripherin species of 85 amino acids. Remarkably, expression of this frameshift peripherin mutant in SW13 cells resulted in disruption of neurofilament network assembly. These results suggest that PRPH mutations may be responsible for a small percentage of ALS, cases and they provide further support of the view that neurofilament disorganization may contribute to pathogenesis.  相似文献   

12.
Calcineurin (CaN) is a Ser/Thr protein phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion that calcineurin is oxidatively inhibited by mutant Cu, Zn superoxide dismutase (SOD1) typical of familial ALS patients in vitro and in transgenic mice. We report that calcineurin activity is markedly inhibited in lymphocytes from 37 sporadic, eight familial ALS patients and an asymptomatic subject carrying an SOD1 mutation as compared to 28 healthy controls. Two other healthy subjects, heterozygous for the D90A mutation from a recessive pedigree, have normal calcineurin activity. Immunoreactive CaN protein, age, sex and riluzole treatment are not related to calcineurin activity in samples from patients. However, we have observed a marked increase in total protein oxidation in extracts from ALS lymphocytes, as compared to extracts from control subjects. These data confirm that modification of calcineurin activity and possibly of calcineurin-mediated pathways of signal transduction (including modulation of apoptotic neuronal death) may contribute to the pathogenesis of ALS.  相似文献   

13.
Nguyen MD  Larivière RC  Julien JP 《Neuron》2001,30(1):135-147
Recent studies suggest that increased activity of cyclin-dependent kinase 5 (Cdk5) may contribute to neuronal death and cytoskeletal abnormalities in Alzheimer's disease. We report here such deregulation of Cdk5 activity associated with the hyperphosphorylation of tau and neurofilament (NF) proteins in mice expressing a mutant superoxide dismutase (SOD1(G37R)) linked to amyotrophic lateral sclerosis (ALS). A Cdk5 involvement in motor neuron degeneration is supported by our analysis of three SOD1(G37R) mouse lines exhibiting perikaryal inclusions of NF proteins. Our results suggest that perikaryal accumulations of NF proteins in motor neurons may alleviate ALS pathogenesis by acting as a phosphorylation sink for Cdk5 activity, thereby reducing the detrimental hyperphosphorylation of tau and other neuronal substrates.  相似文献   

14.
Peroxynitrite, formed by the reaction between nitric oxide and superoxide, has been shown to induce protein nitration, which compromises protein function. We hypothesized that peroxynitrite may regulate cytokine function during inflammation. To test this hypothesis, the neutrophil chemotactic activity (NCA) of interleukin-8 (IL-8) incubated with peroxynitrite was evaluated. Peroxynitrite attenuated IL-8 NCA in a dose-dependent manner (p < 0.01) but did not significantly reduce NCA induced by leukotriene B(4) or complement-activated serum. The reducing agents, dithionite, deferoxamine, and dithiothreitol, reversed and exogenous L-tyrosine abrogated the peroxynitrite-induced NCA inhibition. Papa-NONOate [N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1, 2-dialase or sodium nitroprusside, NO donors, or a combination of xanthine and xanthine oxidase to generate superoxide did not show an inhibitory effect on NCA induced by IL-8. In contrast, small amounts of SIN-1, a peroxynitrite generator, caused a concentration-dependent inhibition of NCA by IL-8. Consistent with its capacity to reduce NCA, peroxynitrite treatment reduced IL-8 binding to neutrophils. Nitrotyrosine was detected in the IL-8 incubated with peroxynitrite by enzyme-linked immunosorbent assay. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of IL-8 binding to neutrophils and a reduction in NCA and suggest that oxidants may play an important role in regulation of IL-8-induced neutrophil chemotaxis.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. Of all patients with ALS, approximately 5%-10% of them are familial and most of the others are sporadic. Superoxide dismutase 1 (SOD1) gene mutations are shown to be associated with about 20% of familial ALS (FALS) patients. FALS is neuropathologically classified into two subtypes: classical FALS in which degeneration is restricted to only motor neurons and FALS which is characterized by the degeneration of the posterior column in addition to the lesion of the motor neuron system. The neuronal Lewy body-like hyaline inclusion (LBHI) is a characteristic neuropathological marker of mutant SOD1-linked FALS with posterior column involvement. Inclusions similar to the neuronal LBHIs have been discovered in astrocytes in certain patients with FALS exhibiting SOD1 gene mutations. The purpose of this review is to discuss the novel neuropathological significance of the astrocytic hyaline inclusions (Ast-HIs) and neuronal LBHIs in brain tissues from individuals with the posterior-column-involvement-type FALS with SOD1 gene mutations. In hematoxylin and eosin preparations, both Ast-HIs and neuronal LBHIs are eosinophilic inclusions and sometimes show eosinophilic cores with paler peripheral halos. Immunohistochemically, both inclusions are intensely positive for SOD1. At the ultrastructural level, both inclusions consist of approximately 15-25 nm-sized granule-coated fibrils and granular materials. Immunoelectron microscopically, these abnormal granule-coated fibrils and granular materials are positive for SOD1. Therefore, the FALS disease process originating from SOD1 gene mutations occurs in astrocytes as well as neurons and is involved in the formation of both inclusions.  相似文献   

16.
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.  相似文献   

17.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   

18.
Nitration of proteins by peroxynitrite may alter protein function. We hypothesized that reactive nitrogen species modulate fibronectin-induced fibroblast migration. To test this hypothesis, we evaluated fibroblast migration induced by fibronectin incubated with and without peroxynitrite. Peroxynitrite attenuated fibronectin-induced fibroblast migration in a dose-dependent manner but did not attenuate complement-activated serum-induced fibroblast migration. The reducing agents, deferoxamine and dithiothreitol (DTT), and L-tyrosine reversed the inhibition by peroxynitrite. PAPA-NONOate, a nitric oxide (NO) donor, and superoxide generated by the action of xanthine oxidase on lumazine or xanthine, also showed an inhibitory effect on fibroblast migration. The peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), caused a concentration-dependent inhibition of fibroblast migration. Peroxynitrite reduced fibronectin binding to fibroblasts and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of fibronectin binding to fibroblasts and suggest that peroxynitrite may play a role in regulation of fibroblast migration.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis.  相似文献   

20.
Inducible nitric oxide synthetase plays an essential role in insulin resistance induced by a high-fat diet. The reaction of nitric oxide with superoxide leads to the formation of peroxynitrite (ONOO-), which can modify several proteins. In this study, we investigated whether peroxynitrite impairs insulin-signalling pathway. Our experiments showed that 3-(4-morpholinyl)sydnonimine hydrochloride (SIN-1), a constitutive producer of peroxynitrite, dose-dependently inhibited insulin-stimulated glucose uptake. While SIN-1 did not affect the insulin receptor protein level and tyrosine phosphorylation, it reduced the insulin receptor substrate-1 (IRS-1) protein level, and IRS-1 associated phosphatidylinositol-3 kinase (PI-3 kinase) activity. Although SIN-1 did not induce Ser307 phosphorylation of IRS-1, tyrosine nitration of IRS-1 was detected in SIN-1-treated-Rat1 fibroblasts expressing human insulin receptors. Mass spectrometry showed that peroxynitrite induced at least four nitrated tyrosine residues in rat IRS-1, including Tyr939, which is critical for association of IRS-1 with the p85 subunit of PI-3 kinase. Our results suggest that peroxynitrite reduces the IRS-1 protein level and decreases phosphorylation of IRS-1 concurrent with nitration of its tyrosine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号