首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptomycin preferentially perturbs ribosomal proofreading   总被引:20,自引:0,他引:20  
Summary We have studied the influence of streptomycin (Sm) on the kinetics and accuracy of translation by wild-type as well as Ram-mutant ribosomes in an in vitro system that mimics the performance characteristics of ribosomes in bacteria. It can be shown in this system that the accuracy of translation is made up of an initial selection step and one or more proofreading steps. The data show that the antibiotic has only a small influence on the initial selectivity step of wild-type or mutant ribosomes. Streptomycin stimulates the missense rate primarily by suppressing the proofreading of the ribosomes. The kinetic effects of Sm and of Ram alteration are not additive, but seem to be overlapping if not identical.  相似文献   

2.
Hyper-accurate ribosomes inhibit growth.   总被引:21,自引:3,他引:18       下载免费PDF全文
We have compared both in vivo and in vitro translation by ribosomes from wild-type bacteria with those from streptomycin-resistant (SmR), streptomycin-dependent (SmD) and streptomycin-pseudo-dependent (SmP) mutants. The three mutant bacteria translate more accurately and more slowly in the absence of streptomycin (Sm) than do wild-type bacteria. In particular, the SmP bacteria grow at roughly half the rate of the wild-type in the absence of Sm. The antibiotic stimulates both the growth rate and the translation rate of SmP bacteria by approximately 2-fold, but it simultaneously increases the nonsense suppression rate quite dramatically. Kinetic experiments in vitro show that the greater accuracy and slower translation rates of mutant ribosomes compared with wild-type ribosomes are associated with much more rigorous proofreading activities of SmR, SmD and SmP ribosomes. Sm reduces the proofreading flows of the mutant ribosomes and stimulates their elongation rates. The data suggest that these excessively accurate ribosomes are kinetically less efficient than wild-type ribosomes, and that this inhibits mutant growth rates. The stimulation of the growth of the mutants by Sm results from the enhanced translational efficiency due to the loss of proofreading, which more than offsets the loss of accuracy caused by the antibiotic.  相似文献   

3.
Ram ribosomes are defective proofreaders   总被引:11,自引:0,他引:11  
We have studied the kinetics of poly(U) translation by three ribosomal ambiguity (Ram) mutants in an in vitro system with performance characteristics similar to those expressed in vivo. The leucine missense frequency supported by Ram ribosomes with tRNALeu2 increases between six and twelve-fold over that of wild-type ribosomes, while the corresponding increase with tRNALeu4 was between four and eight-fold, depending on the rpsD allele. We have used a steady-state assay for proofreading to identify the kinetic lesion responsible for the Ram phenotype. We were unable to detect any difference between Ram and wild-type ribosomes with respect to the initial kinetics of amino-acyl tRNA selection. All of the increased error rates could be associated with a decreased capacity of these Ram ribosomes to discard non-cognate aminoacyl-tRNA by proof reading.  相似文献   

4.
Kinetic impairment of restrictive streptomycin-resistant ribosomes   总被引:11,自引:0,他引:11  
Summary Comparisons in vivo and in vitro of wild-type and otherwise isogenic bacteria with five different mutant alleles of the gene (rpsL) specifying ribosomal protein S12, all resistant to high levels of streptomycin, show that the streptomycin-resistant (Smr) phenotype can be subdivided into major groups: restrictive and non-restrictive. The restrictive bacteria have a characteristically lower frequency of nonsense suppression in vivo, and are also slower than the wild type in their rate of protein synthesis. Non-restrictive Smr bacteria on the other hand do not differ significantly from the wild type either in nonsense suppression frequencies or in the rate of translation.A complementary pattern is seen in vitro, where ribosomes from the restrictive Smr bacteria translate poly(U) with a significantly lower missense error frequency than wild-type ribosomes, and also show an increased Michaelis constant (K M) with respect to their substrate, i.e. ternary complexes. Both effects are correlated with the more aggressive proofreading function that is characteristic of these restrictive ribosomes. In contrast, ribosomes isolated from the non-restrictive Smr bacteria do not show any major difference in either proofreading or missense error in vitro when compared to the wild type.  相似文献   

5.
Summary Three ribosomal ambiguity (Ram) mutants, changed in ribosomal protein S4, have been examined with respect to elongation rate and misreading of translation in vivo and in vitro. Ram mutants increase misreading of nonsense codons in vivo, compared to wild type, between 2–50 times depending on the nature of the nonsense codon, its position, and which rpsD allele is present. Ram ribosomes also show an increased error frequency in vitro. The elongation rate of translation does not seem to be significantly changed, neither in vivo nor in vitro, irrespective of which rpsD allele is present.We suggest that there exists no general relationship between the accuracy and the overall speed of translation in Ram strains.Abbreviations poly U poly(uridylic acid) - IPTG isopropyl B-(scd)-thiogalactopyranoside - ATP adenosine (5) triphosphate - GTP guanosine (5) triphosphate - ONPG o-nitrophenyl-B-d-galactoside - Phe phenylalanine - Leu leucine - EF-G efongation factor G - EF-Tu elongation factor Tu - EF-Ts elongation factor Ts - Tet-R tetracycline resistance  相似文献   

6.
ms2i6A deficiency enhances proofreading in translation.   总被引:4,自引:0,他引:4  
The hypermodified base 2-methylthio-N6-isopentenyladenosine (ms2i6A) at position 37 occurs frequently in tRNAs that read codons starting with uridine. Here we have studied how ms2i6A affects the accuracy of poly(U) translation in vitro. Deficiency leads to a higher rejection rate of tRNA4(Leu) by more aggressive proofreading on the wild-type ribosome, but with the initial selection step unchanged. Our data indicate that ms2i6A has no effect on codon-anticodon interactions on wild-type ribosomes as long as aminoacyl-tRNA is in ternary complex with EF-Tu and GTP. ms2i6A deficiency in the cognate poly(U) reader tRNA(Phe) leads to increased misreading when the near-cognate competitor tRNA4(Leu) is wild-type. ms2i6A deficiency in tRNA4(Leu) gives a decreased error level in competition with wild-type tRNA(Phe).  相似文献   

7.
Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The K(diss) for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 x 10(-7) M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm(1) (r)BNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The K(diss) for the chloroplast ribosome-dihydrostreptomycin complex of Sm(1) (r) is 387 x 10(-7) M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 x 10(-7) M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena.  相似文献   

8.
Summary Cell free extracts from a streptomycin-resistant E. coli mutant which is also temperature-sensitive for Q phage were studied for suppression of a nonsense mutation at various temperatures. The streptomycin-resistant ribosomes of the mutant were found to be temperature-sensitive in suppression of an amber mutation in f2 phage coat protein while retaining the ability to synthesize proteins at an elevated temperature (42° C). The restriction of amber suppression at 42° C is assumed to be related to an alteration in the ribosomal protein S12 of the streptomycin-resistant mutant which also causes a change in its electrophoretic mobility.  相似文献   

9.
Summary Several thousand mutagenized clones of Escherichia coli were screened for methyl group incorporation into protein in crude extracts, in order to isolate mutants lacking the full complement of methyl groups in ribosomal proteins. One mutant isolated by this method and designated prm-1 incorporated 6–7 methyl groups per ribosome upon incubation of its ribosomes with a partially purified enzyme preparation from E. coli wild-type. The methyl groups were located exclusively in the 50S particle and for the most part (85%) in protein L11. Three methylated amino acids were detected: -N-trimethyllysine, -N-monomethyllysine, and an uncharacterized amino acid. These accounted respectively for 4.6, 1.3 and 0.9 methyl groups per ribosome. These results indicate that protein L11 in wild-type contains a stoichiometric amount of these methylated amino acids which are absent in mutant prm-1. Since this mutant is fully viable, its methylation deficiency does not result in a major defect in ribosome assembly or functioning.  相似文献   

10.
Codon-specific missense errors in vivo   总被引:8,自引:3,他引:8       下载免费PDF全文
We have developed a simple method for measuring the missense substitution of amino acids at specified positions in proteins synthesized in vivo. We find that the frequency of cysteine substitution for the single arginine in Escherichia coli ribosomal protein L7/L12 is close to 10(-3) for wild-type bacteria, decreases to 4 x 10(-4) in streptomycin-resistant bacteria containing mutant S12 (rpsL), and is virtually unchanged in Ram bacteria containing mutant S4 (rpsD). We have also found that the frequency of the cysteine substitution for the single tryptophan in E. coli ribosomal protein S6 is 3-4 x 10(-3) for wild-type bacteria, decreases to 6 x 10(-4) in streptomycin-resistant bacteria and is elevated to nearly 10(-2) in Ram bacteria.  相似文献   

11.
Mutant EF-Tu increases missense error in vitro   总被引:4,自引:0,他引:4  
Summary We have studied the consequences of mutational alteration in the structure of EF-Tu on the missense errors and proofreading activity of bacterial ribosomes in vitro. Our data show that the EF-Tu Bo mutant form of EF-Tu (van der Meide et al. 1983a) is inactive in polypeptide synthesis on the ribosome, even though it binds aminoacyl-tRNA. A second mutant form, EF-Tu Ar (van der Meide et al. 1983a), is active in polypeptide synthesis but supports a much higher messense incorporation with either leucine isoacceptor 2 or leucine isoacceptor 4 in the in vitro system. Further analysis of the kinetic basis of this enhanced missense frequency revealed that the mutation responsible for the alteration in EF-Tu Ar increases the errors at both the proofreading step and the initial selection. In this respect the effect of this particular mutation is similar to the mode of action of the antibiotic kanamycin (Jelenc and Kurland 1984).  相似文献   

12.
Summary A mutant of the yeast Saccharomyces cerevisiae has been isolated that is resistant to narciclasine, an inhibitor of peptide bond formation on 80S ribsomes. The mutant shows cross-resistance to a number of inhibitors of peptidyl transferase including anthelmycin, a 4-aminohexosyl cytosine antibiotic, which does not compete with narciclasine for its ribosomal binding site. The mutation is within the gene tcm1 or a closely linked gene on chromosome XV; it is expressed in the 60S ribosomal subunit. The parameters of the binding of (3H)narciclasine to ribosomes and ribosomal subunits from both wild-type and mutant strains have been calculated by ultracentrifugation. One molecule of narciclasine is bound per ribosome or per 60S ribosomal subunit, the values of the dissociation constants being 0.054 and 0.13 m respectively, for 80S and 60S particles from the wild-type cells. Ribosomes of the mutant strain have a lower affinity for narciclasine and trichodermin than ribosomes from wild-type cells. The mutation is semidominant in heterozygous diploid cells.  相似文献   

13.
The rpsL gene of Escherichia coli encodes the highly conserved rps12 protein of the ribosomal accuracy centre. We have used the E. coli gene to model the phenotypic effects of specific substitutions found in the mitochondrial gene for rps12. Variants created by in vitro mutagenesis were tested in two different plasmid vector systems, in both streptomycin-sensitive and streptomycin-resistant hosts. A substitution with respect to eubacterial rps12 (K87-->Q), found in all metazoan and fungal mitochondrial orthologues thus far studied, is associated with low-level resistance to streptomycin and a modest (15%) drop in translational elongation rate, but without significant effects on translational accuracy. An amino-acid replacement at a highly conserved leucine residue (L56-->H), associated with the phenotype of sensitivity to mechanical vibration and hemizygous female lethality in Drosophila, creates a functionally inactive but structurally stable protein that is not assembled into ribosomes. The presence in the cell of the mutant, but not wild-type, rpsL greatly downregulates the level of a prominent polypeptide of approximately 50 kDa. These results indicate novel structure-function relationships in rps12 genes affecting translational function, ribosome assembly and drug sensitivity, and indicate a novel regulatory pathway that may influence ribosome biogenesis.  相似文献   

14.
Ribosomal rpsD mutations did not stimulate nonsense suppressor tRNAs in a general manner according to their increased ribosomal ambiguity and decreased proofreading efficiency. Streptomycin, which stimulates error production by blocking proofreading in vitro, did not increase efficiency of suppressor tRNAs in strains with normal or streptomycin-resistant (rpsL) ribosomes. It did so only in combination with one rpsL mutation which is associated with streptomycin pseudodependence.  相似文献   

15.
Accuracy of activity of ribosome isolated from UV-light-induced streptomycin-resistant R-21 mutant ofStreptomyces granaticolor was measured in anE. coli-derived system translating poly(U) with a high rate and accuracy. Ribosomes from the R-21 mutant strain were shown to be resistant to streptomycin and about two-fold more accurate than those from the wild type. The mutant strain was found to be resistant to 1000 mg/L streptomycin (Stm) during vegetative growth while it sporulated on agar plates containing only up to 200 mg/L of Stm. The growth rate of the R-21 mutant in complex liquid medium was indistinguishable from that of the wild-type strain.  相似文献   

16.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

17.
Suboptimal growth with hyper-accurate ribosomes   总被引:8,自引:0,他引:8  
Mutant bacteria with hyperaccurate ribosomes support their excessive accuracy of translation in vitro by dissipating 1.5 to 2.5 cognate ternary complexes per peptide bond formed. This is to be compared with a dissipation rate close to 1.1 for wild-type ribosomes. Here, we have tested the hypothesis that a corresponding loss of translational efficiency in vivo would lower the growth rate of the mutants. Such a growth inhibitory effect would explain why the lower accuracy of wild-type ribosomes is more fit. Our data show that as expected the of the hyperaccurate mutants is smaller than that of wild-type bacteria. In contrast, during glucose-limited growth in chemostats there is not the same simple correlation between growth yield and ribosomal efficiency for the hyperaccurate mutants.Abbreviations SmR streptomycin resistant - SmP streptomycin pseudodependent - SmD streptomycin dependent - EF-Tu elongation factor Tu - EF-Ts elongation factor Ts  相似文献   

18.
Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered ‘specialized’ ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.  相似文献   

19.
S Tapio  L A Isaksson 《Biochimie》1988,70(2):273-281
Kirromycin-resistant mutant forms of elongation factor Tu, which are coded by tufA (Ar) or tufB (Bo) and are associated with an increased rate of translational error formation, have been analysed. In vivo, Ar was found to increase misreading as well as suppression of non-sense codons irrespective of Bo in a strain with wild type ribosomes. It is therefore not necessary to evoke both tufA (Ar) and tufB (Bo) mutations together in order to increase translational error as suggested earlier [1]. When combined with a hyperaccurate ribosomal rpsL (S12) mutation, Ar counteracts the restrictive effects on translational error formation caused by the altered protein S12, thus restoring the levels of missense error in vitro and non-sense error and suppression in vivo to near wild type values. As judged from in vitro experiments this results principally from a lowered selectivity of the Ar ternary complex at the initial discrimination step on the ribosome during translation. In vivo, this compensatory effect on the rpsL mutation on non-sense error formation and suppression is seen irrespective of the nature of tRNA or codon context. Furthermore, the tufA mutation enhances the cellular growth rate of the rpsL mutant, whereas it decreases growth of strains with normal ribosomes. Inactivation of one of the two genes coding for EF-Tu (tufB), while leaving the other gene (tufA) intact, can by itself, increase non-sense error formation and suppression.  相似文献   

20.
To investigate the function of ribosomal proteins and translational factors in Bacillus subtilis, we developed an in vivo assay system to measure the level of nonsense readthrough by utilizing the LacZ-LacI system. Using the in vivo nonsense readthrough assay system which we developed, together with an in vitro poly(U)-directed cell-free translation assay system, we compared the processibility and translational accuracy of mutant ribosomes with those of the wild-type ribosome. Like Escherichia coli mutants, most S12 mutants exhibited lower frequencies of both UGA readthrough and missense error; the only exception was a mutant (in which Lys-56 was changed to Arg) which exhibited a threefold-higher frequency of readthrough than the wild-type strain. We also isolated several ribosomal ambiguity (ram) mutants from an S12 mutant. These ram mutants and the S12 mutant mentioned above (in which Lys-56 was changed to Arg) exhibited higher UGA readthrough levels. Thus, the mutation which altered Lys-56 to Arg resulted in a ram phenotype in B. subtilis. The efficacy of our in vivo nonsense readthrough assay system was demonstrated in our investigation of the function of ribosomal proteins and translational factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号