首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Amber, ochre and opal suppressor tRNA genes have been generated by using oligonucleotide directed site-specific mutagenesis to change one or two nucleotides in a human serine tRNA gene. The amber and ochre suppressor (Su+) tRNA genes are efficiently expressed in CV-1 cells when introduced as part of a SV40 recombinant. The expressed amber and ochre Su+ tRNAs are functional as suppressors as demonstrated by readthrough of the amber codon which terminates the NS1 gene of an influenza virus or the ochre codon which terminates the hexon gene of adenovirus, respectively. Interestingly, several attempts to obtain the equivalent virus stock of an SV40 recombinant containing the opal suppressor tRNA gene yielded virus lacking the opal suppressor tRNA gene. This suggests that expression of an efficient opal suppressor derived from a human serine tRNA gene is highly detrimental to either cellular or viral processes.  相似文献   

2.
We have used site-specific mutagenesis to change the anticodon of a Xenopus laevis tyrosine tRNA gene so that it would recognize ochre codons. This tRNA gene is expressed when amplified in monkey cells as part of a SV40 recombinant and efficiently suppresses termination at both the ochre codon separating the adenovirus 2 hexon gene from a 23-kd downstream gene and the ochre codon at the end of the NS1 gene of influenza virus A/Tex/1/68. Termination at an amber codon of a NS1 gene of another influenza virus strain was not suppressed by the (Su+) ochre gene suggesting that in mammalian cells amber codons are not recognized by ochre suppressor tRNAs. Finally, microinjection into mammalian cells of both (Su+) ochre tRNA genes and selectible genes containing ochre nonsense mutations gives rise to colonies under selective conditions. We conclude that it should be possible to isolate a wide assortment of mammalian cell lines with ochre suppressor activity.  相似文献   

3.
A nuclear tRNALys gene from Arabidopsis thaliana was cloned and mutated so as to express tRNAs with altered anticodons which bind to a UAG nonsense (amber) codon and to the Arg (AGG), Asn (AAC,AAT), Gln (CAG) or Glu (GAG) codons. Concomitantly, a codon in the firefly luciferase gene for a functionally important Lys was altered to an amber codon, or to Arg, Asn, Gln, Glu, Thr and Trp codons, so as to construct reporter genes reliant upon incorporation of Lys. The altered tRNALys and luciferase genes were introduced into Nicotiana benthamiana protoplasts and expression of the mutated tRNAs was verified by translational suppression of the mutant firefly luciferase genes. Expression of the amber suppressor tRNA CUA Lys from non-replicative vectors promoted 10–40% suppression of the luciferase nonsense reporters while expression of the amber and missense tRNALys suppressor genes from a geminivirus vector capable of replication promoted 30–80% suppression of the luciferase nonsense reporter and up to 10% suppression of the luciferase missense reporters with Arg, Asn, Gln and Glu codons.  相似文献   

4.
5.
An Arabidopsis thaliana L. DNA containing the tRNA(TrpUGG) gene was isolated and altered to encode the amber suppressor tRNA(TrpUAG) or the ochre suppressor tRNA(TrpUAA). These DNAs were electroporated into carrot protoplasts and tRNA expression was demonstrated by the translational suppression of amber and ochre nonsense mutations in the chloramphenicol acetyltransferase (CAT) reporter gene. DNAs encoding tRNA(TrpUAG) and tRNA(TrpUAA) nonsense suppressor tRNAs caused suppression of their cognate nonsense codons in CAT mRNAs, with the tRNA(TrpUAG) gene exhibiting the greater suppression under optimal conditions for expression of CAT. The development of these translational suppressors which function in plant cells facilitates the study of plant tRNA gene expression and will make possible the manipulation of plant protein structure and function.  相似文献   

6.
R E Doerig  B Suter  M Gray    E Kubli 《The EMBO journal》1988,7(8):2579-2584
Seven xanthine dehydrogenase and cross-reacting material negative Drosophila melanogaster rosy stocks were screened for amber and ochre nonsense mutations. Amber and ochre nonsense suppressors were created by site-directed mutagenesis starting from a wild-type tRNA(Tyr) gene. The suppressor tRNA genes were subcloned into a pUChsneo transformation vector providing heat-shock controlled neomycin resistance. The seven rosy stocks were germline transformed with amber and ochre tDNA(Tyr), and the G1 generation was screened for Geneticin resistance. Surviving rosy516 flies transformed with the amber suppressor showed an eye colour intermediate between the original ry516 stock and the wild-type, suggesting that ry516 is an amber nonsense mutant. This was confirmed by sequencing the relevant part of the ry516 gene; the analysis revealed a C-to-T transition in a CAG glutamine codon at nucleotide 1522 of the wild-type rosy gene.  相似文献   

7.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

8.
9.
Of all the Escherichia coli tRNA genes that can give rise to an amber or an ochre suppressor by a single-nucleotide mutation, only the tRNAGlu genes have not been observed to do so. A study of the relationship between the sequences of tRNAs and the codons they translate predicts that the ochre suppressor derived from tRNAGlu would function very poorly on the ribosome. We have used site-specific mutagenesis to create the gene for such a tRNA in order to test this prediction. We cloned the tRNAGlu-Suoc gene into a high copy number plasmid, under control of the lacUV5 promoter. The mutant tRNA suppresses both amber and ochre nonsense mutations. As predicted, it is less efficient than other suppressors expressed under similar conditions.  相似文献   

10.
We describe the generation of mammalian cell lines carrying amber suppressor genes. Nonsense mutants in the herpes simplex virus thymidine kinase (HSV tk) gene, the Escherichia coli xanthine-guanine phosphoribosyl transferase (Eco-gpt) gene and the aminoglycoside 3′ phosphotransferase gene of the Tn5 transposon (NPT-II) were isolated and characterized. Each gene was engineered with the appropriate control signals to allow expression in both E. coli and mammalian cells. Expression in E. coli made possible the use of well developed bacterial and phage genetic manipulations to isolate and characterize the nonsense mutants. Once characterized, the nonsense mutants were transferred into mammalian cells by microinjection and used, in turn, to select for amber suppressor genes. Xenopus laevis amber suppressor genes, prepared by site-specific mutagenesis of a normal X. laevis tRNA gene, were microinjected into the above cell lines and selected for the expression of one or more of the amber mutant gene products. The resulting cell lines, containing functional amber suppressor genes, are stable and exhibit normal growth rates.  相似文献   

11.
12.
13.
Oligonucleotide-directed mutagenesis was used to generate amber, ochre and opal suppressors from cloned Arabidopsis and Nicotiana tRNA(Tyr) genes. The nonsense suppressor tRNA(Tyr) genes were efficiently transcribed in HeLa and yeast nuclear extracts, however, intron excision from all mutant pre-tRNAs(Tyr) was severely impaired in the homologous wheat germ extract as well as in the yeast in vitro splicing system. The change of one nucleotide in the anticodon of suppressor pre-tRNAs leads to a distortion of the potential intron-anticodon interaction. In order to demonstrate that this caused the reduced splicing efficiency, we created a point mutation in the intron of Arabidopsis tRNA(Tyr) which affected the interaction with the wild-type anticodon. As expected, the resulting pre-tRNA was also inefficiently spliced. Another mutation in the intron, which restored the base-pairing between the amber anticodon and the intron of pre-tRNA(Tyr), resulted in an excellent substrate for wheat germ splicing endonuclease. This type of amber suppressor tRNA(Tyr) gene which yields high levels of mature tRNA(Tyr) should be useful for studying suppression in higher plants.  相似文献   

14.
Over 100 revertants of five different amber mutants were analyzed by Southern blot hybridization using synthetic oligomers as probes to detect a single base change at the anticodon, CCA to CTA (amber), of tRNA(Trp) genes of Caenohrabditis elegans. Of the 12 members of the tRNA(Trp) gene family, a total of eight were converted to amber suppressor alleles. All eight encode identical tRNAs; three of these are new tRNA(Trp) suppressors, sup-21, sup-33 and sup-34. Previous results had suggested that individual suppressor tRNA genes were expressed differentially in a cell-type- or developmental stage-specific manner. To extend these observations to the new genes and to test the specificity of expression against additional genes, cross suppression tests of these eight amber suppressors were carried out against amber mutations in several different genes including genes likely to be expressed in the same cell-type: three nervous system-affecting genes, two muscle structure-affecting genes and two genes presumed to be expressed in hypodermis. Seven out of eight suppressors could be distinguished one from another by the spectrum of their suppression efficiencies. These results also provide further evidence of cell-type-specific patterns of expression in the nervous system, muscle and hypodermis. The suppression pattern of the suppressor against the two muscle-affecting genes, unc-15 and unc-52, suggested that either the suppressors are expressed in a developmental stage-specific manner or that the unc-52 products are expressed in cell-types other than muscle, possibly hypodermis.  相似文献   

15.
Su9 of Escherichia coli differs from tRNATrp by only a G to A transition in the D arm, yet has an enhanced ability to translate UGA by an unusual C X A wobble pairing. In order to examine the effects of this mutation on translation of the complementary and wobble codons in vivo, we constructed the gene for an amber (UAG) suppressing variant of Su9, trpT179, by making the additional nucleotide change required for an amber suppressor anticodon. The resultant suppressor tRNA, Su79, is a very strong amber suppressor. Furthermore, the D arm mutation enables Su79 to suppress ochre (UAA) codons by C X A wobble pairing. These data demonstrate that the effect of the D arm mutation on wobble pairing is not restricted to a CCA anticodon. The effect extends to the CUA anticodon of Su79, thereby creating a new type of ochre suppressor. The new coding activity of Su79 cannot be explained by alterations in the level of aminoacylation, steady-state tRNA concentration, or nucleotide modification. The A24 mutation could permit unorthodox wobble pairings by generally enhancing tRNA efficiency at all codons or by altering codon specificity.  相似文献   

16.
Several temperate bacteriophage utilize chromosomal sequences encoding putative tRNA genes for phage attachment. However, whether these sequences belong to genes which are functional as tRNA is generally not known. In this article, we demonstrate that the attachment site of temperate phage 16-3 (attB) nests within an active proline tRNA gene in Rhizobium meliloti 41. A loss-of-function mutation in this tRNA gene leads to significant delay in switching from lag to exponential growth phase. We converted the putative Rhizobium gene to an active amber suppressor gene which suppressed amber mutant alleles of genes of 16-3 phage and of Escherichia coli origin in R. meliloti 41 and in Agrobacterium tumefaciens GV2260. Upon lysogenization of R. meliloti by phage 16-3, the proline tRNA gene retained its structural and functional integrity. Aspects of the co-evolution of a temperate phage and its bacterium host is discussed. The side product of this work, i.e. construction of amber suppressor tRNA genes in Rhizobium and Agrobacterium, for the first time widens the options of genetic study.  相似文献   

17.
We demonstrate here the first experimental suppression of a premature termination codon in vivo by using an ochre suppressor tRNA acting in an intact mouse. Multicopy tRNA expression plasmids were directly injected into skeletal muscle and into the hearts of transgenic mice carrying a reporter gene with an ochre mutation. A strategy for modulation of suppressor efficiency, applicable to diverse systems and based on tandem multimerization of the tRNA gene, is developed. The product of suppression (chloramphenicol acetyltransferase) accumulates linearly with increases in suppressor tRNA concentration to the point where the ochre-suppressing tRNA(Ser) is in four- to fivefold excess over the endogenous tRNA(Ser). The subsequent suppressor activity plateau seems to be attributable to accumulation of unmodified tRNAs. These results define many salient variables for suppression in vivo, for example, for tRNA suppression employed as gene therapy for nonsense defects.  相似文献   

18.
19.
20.
As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS coding sequence attached to a minimal mammalian cell promoter was placed downstream of seven tandem tetracycline operator sequences. Cotransfection of HeLa cell lines expressing a tetracycline transactivator protein, carrying a tetracycline repressor domain linked to part of a herpesvirus VP16 activation domain, with the E. coli GlnRS gene and the E. coli glutamine-inserting amber suppressor tRNA gene resulted in suppression of the amber codon in a reporter chloramphenicol acetyltransferase gene. The tetracycline transactivator-mediated expression of E. coli GlnRS was essentially completely blocked in HeLa or COS-1 cells grown in the presence of tetracycline. Concomitantly, both aminoacylation of the suppressor tRNA and suppression of the amber codon were reduced significantly in the presence of tetracycline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号