首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 °C on tissue levels of adenosine 3′–5′ cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc), as well as the levels of the protein kinase C (PKC) second messenger, inositol 1,4,5-trisphosphate (IP3), were assessed in two anurans, the freeze-tolerant wood frog, Rana sylvatica, and the freeze-intolerant leopard frog, Rana pipiens. Dehydration of wood frogs resulted in a rapid elevation of liver cAMP and PKAc; cAMP was 3.4-fold greater than control values in animals that had lost 5% of total body water, whereas PKAc was elevated threefold in 20% dehydrated frogs. These results indicate protein kinase A mediation of the liver glycogenolysis and hyperglycemia that is induced by dehydration in this species. Skeletal muscle PKAc content also rose with dehydration but neither cAMP nor PKAc was affected by dehydration in leopard frog tissues. Anoxia exposure had different effects on signal transduction systems. PKAc was elevated after 1 h anoxia in R. sylvatica brain and was sustained over time but the enzyme was unaffected in other organs; by contrast, R. pipiens showed variable responses by PKAc to anoxia in three organs. Both species showed rapid (within 30 min) and large (3 to 7.8-fold) increases in IP3 in liver of anoxic frogs that decreased slowly with continued anoxia. IP3 also increased quickly in heart of anoxia-exposed wood frogs. This suggests that PKC may mediate various metabolic adjustments that promote hypoxia/anoxia resistance such as coordinating metabolic rate depression. A progressive rise in liver IP3 during dehydration in wood frogs (reaching fourfold higher than controls in 40% dehydrated animals) may also mediate similar hypoxia resistance adaptations under this stress since anurans experience progressive hypoxia due to increased blood viscosity when water loss reaches high values. The patterns of second messenger and PKAc changes in wood frog liver during dehydration closely parallel the changes seen in these same parameters during natural freezing suggesting that the freeze tolerance of selected terrestrially hibernating anurans may have evolved out of various anuran mechanisms of dehydration resistance. Accepted: 2 January 1997  相似文献   

2.
Saccharomyces cerevisiae Cdc7 kinase is required for initiation of S phase, and its kinase activity, which is positively regulated by Dbf4 protein, reaches maximum at the G1/S boundary. In this study, we constructed Cdc7 point mutants (T281E, T281A, D182N, D163N, and T167E) and examined the effect of each mutant on growth. All the mutants lost the ability to complement temperature-sensitive growth of cdc7(ts) mutants at a low protein level, whereas T281A (putative target of phosphorylation) and T167E (residue involved in substrate recognition) restored the growth of cdc7(ts) when overproduced to a high level. Three putative kinase-negative mutants (T281E, D182N, and D163N) inhibited growth when overexpressed in a wild-type strain. Analyses of DNA content and morphology revealed that most cells were arrested as dumbbells with 1C DNA, indicative of a block in the G1 to S transition. This growth inhibition was suppressed by co-overexpression of the wild-type Cdc7 or Dbf4 protein. Furthermore, deletion of the Dbf4 protein-binding region in each Cdc7 mutant resulted in loss of growth inhibitory effect. Thus, dominant-negative effects of T281E, D182N, and D163N on growth can be best explained by inactivation of the wild-type Cdc7 function through titration of Dbf4 by these inactive kinases. Our results are consistent with the notion that association of Dbf4 with Cdc7 is essential for the G1 to S transition in S. cerevisiae. Received: 17 September 1996 / Accepted: 6 January 1997  相似文献   

3.
4.
5.
The gltA gene encoding a glutamate synthase (GOGAT) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned as a 6.6 kb HindIII-BamHI fragment. Sequence analysis indicates that gltA encodes a 481- amino acid protein (53 269 Da). The deduced amino acid sequence of KOD1-GltA includes conserved regions that are found in the small subunits of bacterial GOGAT: two cysteine clusters, an adenylate-binding consensus sequence and an FAD-binding consensus sequence. However, no sequences homologous to the large subunit of bacterial GOGAT were found in the upstream or downstream regions. In order to examine whether GltA alone can act as a functional GOGAT, GltA was overexpressed in Escherichia coli BL21 (DE3) cells using an expression plasmid. GltA was purified to homogeneity and shown to be functional as a homotetramer of approximately 205 kDa, which is equivalent to the molecular weight of the native GOGAT from KOD1, thus indicating that KOD1-GOGAT is the smallest known active GOGAT. GltA is capable of both glutamine-dependent and ammonia-dependent synthesis of glutamate. Synthesis of glutamate by KOD1-GltA required NADPH, indicating that this enzyme is an NADPH-GOGAT (EC 1.4.1.13). The optimum pH for both activities was 6.5. However, GltA exhibited different optimum temperatures for activity depending on the reaction assayed (glutamine-dependent reaction, 80° C; ammonia-dependent reaction, 90° C). Received: 30 October 1996 / Accepted: 13 January 1997  相似文献   

6.
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms−1 ranged from 1265 ± 208 μs (P1, N = 18) to 4802 ± 441 μs (N4, N = 13). Amplitudes ranged from 3.72 ± 1.51 μV (P1/N1, N = 18) to 1.49 ± 0.77 μV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from −38.7 ± 7.3 μs dB−1 (P1, N = 18) to −71.6 ± 21.9 μs dB−1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 ± 0.08 μV dB−1 (P1/N1, N = 18) to 0.07 ± 0.04 μV dB−1 (P3/N3, N = 11). The mean response threshold across all animals was −21.83 ± 3.34 dB re: 1.0 g ms−1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail. Accepted: 18 January 1997  相似文献   

7.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

8.
The purpose of this study was to investigate the effect of a thiamin derivative, thiamin tetrahydrofurfuryl disulfide (TTFD), on oxygen uptake (˙VO2), lactate accumulation and cycling performance during exercise to exhaustion. Using a randomized, double-blind, cross-over design with a 10-day washout between trials, 14 subjects ingested either 1 g · day−1 of TTFD or a placebo (PL) for 4 days. On day 3, subjects performed a progressive exercise test to exhaustion on a cycle ergometer for the determination of ˙VO2submax, ˙VO2peak, lactate concentration ([La ]), lactate threshold (ThLa) and heart rate ( f c). On day 4, subjects performed a maximal 2000-m time trial on a cycle ergometer. A one-way analysis of variance (ANOVA) with repeated measures was used to determine significant differences between trials. There were no significant differences detected between trials for serial measures of ˙VO2submax, [La] or f c. Likewise, ˙VO2peak [PL 4.06 (0.19) TTFD 4.12 (0.19) l · min−1, P = 0.83], ThLa [PL 2.47 (0.17), TTFD 2.43 (0.16) l · min−1, P = 0.86] and 2000-m performance time [PL 204.5 (5.5), TTFD 200.9 (4.3) s, P = 0.61] were not significantly different between trials. The results of this study suggest that thiamin derivative supplementation does not influence high-intensity exercise performance. Accepted: 19 December 1996  相似文献   

9.
This study compared the effects of supplementing the normal diets of six trained cyclists [maximal oxygen uptake O2max) 4.5 (0.36)l · min−1; values are mean (SD)] with additional carbohydrate (CHO) on muscle glycogen utilisation during a 1-h cycle time-trial (TT). Using a randomised crossover design, subjects consumed either their normal diet (NORM) for 3 days, which consisted of 426 (137) g · day−1 CHO [5.9 (1.4) g · kg−1 body mass (BM)], or additional CHO (SUPP) to increase their intake to 661 (76) g · day−1 [9.3 (0.7) g · kg−1 BM]. The SUPP diet elevated muscle glycogen content from 459 (83) to 565 (62) mmol · kg−1 dry weight (d.w.) (P < 0.05). However, despite the increased pre-exercise muscle glycogen stores, there was no difference in the distance cycled during the TT [40.41 (1.44) vs 40.18 (1.76) km for NORM and SUPP, respectively]. With NORM, muscle glycogen declined from 459 (83) to 175 (64) mmol · kg−1 d.w., whereas with SUPP the corresponding values were 565 (62) and 292 (113) mmol · kg−1 d.w. Accordingly, both muscle glycogen utilisation [277 (64) vs 273 (114) mmol · kg−1 d.w.] and total CHO oxidation [169 (20) vs 165 (30) g · h−1 for NORM and SUPP, respectively] were similar. Neither were there any differences in plasma glucose or lactate concentrations during the two experimental trials. Plasma glucose concentration averaged 5.5 (0.5) and 5.6 (0.6) mmol · l−1, while plasma lactate concentration averaged 4.4 (1.9) and 4.4 (2.3) mmol · l−1 for NORM and SUPP, respectively. The results of this study show that when well-trained subjects increase the CHO content of their diet for 3 days from 6 to 9 g · kg−1 BM there is only a modest increase in muscle glycogen content. Since supplementary CHO did not improve TT performance, we conclude that additional CHO provides no benefit to performance for athletes who compete in intense, continuous events lasting 1 h. Furthermore, the substantial muscle CHO reserves observed at the termination of exercise indicate that whole-muscle glycogen depletion does not determine fatigue at this exercise intensity and duration. Accepted: 25 November 1996  相似文献   

10.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

11.
cDNAs encoding three S-RNases of almond (Prunus dulcis), which belongs to the family Rosaceae, were cloned and sequenced. The comparison of amino acid sequences between the S-RNases of almond and those of other rosaceous species showed that the amino acid sequences of the rosaceous S-RNases are highly divergent, and intra-subfamilial similarities are higher than inter-subfamilial similarities. Twelve amino acid sequences of the rosaceous S-RNases were aligned to characterize their primary structural features. In spite of␣their high level of diversification, the rosaceous S-RNases were found to have five conserved regions, C1, C2, C3, C5, and RC4 which is Rosaceae-specific conserved region. Many variable sites fall into one region, named RHV. RHV is located at a similar position to that of the hypervariable region a (HVa) of the solanaceous S-RNases, and is assumed to be involved in recognizing S-specificity of pollen. On the other hand, the region corresponding to another solanaceous hypervariable region (HVb) was not variable in the rosaceous S-RNases. In the phylogenetic tree of the T2/S type RNase, the rosaceous S-RNase fall into two subfamily-specific groups (Amygdaloideae and Maloideae). The results of sequence comparisons and phylogenetic analysis imply that the present S-RNases of Rosaceae have diverged again relatively recently, after the divergence of subfamilies. Received: 28 May 1998 / Accepted: 13 August 1998  相似文献   

12.
In the phytopathogenic basidiomycete Ustilago maydis mating and dikaryon formation are controlled by a pheromone/receptor system and the multiallelic b locus. Recently, a gene encoding a G protein α subunit, gpa3, was isolated and has subsequently been implicated in pheromone signal transduction. Mutants deleted for gpa3 are sterile and nonpathogenic, and exhibit a morphology that is similar to that of mutants with defects in the adenylate cyclase gene uac1. We have found that the sterility and mutant morphology of gpa3 deletion strains can be rescued by exogenous cAMP. In these mutants and in the corresponding wild-type strains, exogenous cAMP stimulates pheromone gene expression to a level comparable to that seen in the pheromone-stimulated state. In addition, we demonstrate that uac1 is epistatic to gpa3. We conclude that Gpa3 controls the cAMP signalling pathway in U.maydis and discuss how this pathway feeds into the pheromone response. Received: 4 May 1998 / Accepted: 24 July 1998  相似文献   

13.
14.
 The present study was undertaken to determine the haematological and cardiovascular status, at rest and during prolonged (1 h) submaximal exercise (approximately 70% of peak oxygen uptake) in a group (n = 12) of chronic coca users after chewing approximately 50 g of coca leaves. The results were compared to those obtained in a group (n = 12) of nonchewers. At rest, coca chewing was accompanied by a significant increase in heart rate [from 60 (SEM 4) TO 76 (SEM 3) beats · min−1], in haematocrit [from 53.2 (SEM 1.2) to 55.6 (SEM 1.1)%] in haemoglobin concentration, and plasma noradrenaline concentration [from 2.8 (SEM 0.4) to 5.0 (SEM 0.5) μmol · l−1]. It was calculated that coca chewing for 1 h resulted in a significant decrease in blood [−4.3 (SEM 2.2)%] and plasma [−8.7 (SEM 1.2)%] volume. During submaximal exercise, coca chewers displayed a significantly higher heart rate and mean arterial blood pressure. The exercise-induced haemoconcentration was blunted in coca chewers compared to nonchewers. It was concluded that the coca-induced fluid shift observed at rest in these coca chewers was not cumulative with that of exercise, and that the hypovolaemia induced by coca chewing at rest compromised circulatory adjustments during exercise. Accepted: 29 October 1996  相似文献   

15.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

16.
The Mig1 repressor is a key effector in glucose repression in the yeast Saccharomyces cerevisiae. To gain further insights into structure-function relationships, we have now cloned the MIG1 homologue from the yeast Kluyveromyces marxianus. The amino acid sequence deduced from KmMIG1 differs significantly from ScMig1p outside the highly conserved zinc fingers. However, 12 discrete conserved motifs could be identified in a multiple alignment that also included the K. lactis Mig1p sequence. We further found that KmMig1p is fully functional when expressed in S. cerevisiae. First, it represses the SUC2 promoter almost as well as ScMig1p. This repression requires the Cyc8 and Tup1 proteins and is dependent on a C-terminal region comprising several conserved leucine-proline repeats. Second, KmMig1p is regulated by glucose in S. cerevisiae, and a KmMig1-VP16 hybrid activator is inhibited by the ScSnf1p kinase in the absence of glucose. This suggests that KmMig1p has retained the ability to interact with several S. cerevisiae proteins, and reinforces the notion that the conserved motifs are functionally important. Finally, we found that the physiological role of Mig1p also is conserved in K. marxianus, since KmMig1p represses INU1, the counterpart of SUC2 in this organism. Received: 16 October 1996 / Accepted: 19 February 1997  相似文献   

17.
The effect of gender on left ventricular systolic function and exercise haemodynamics in healthy young subjects was studied during 30-s all-out sudden strenuous dynamic exercise. A group of 22 men [19.3 (SD 1) years] 20 women [19.1 (SD 1) years] volunteered to participate in this study. Two-dimensional direct M-mode and Doppler echocardiograph studies were performed with the subject in the sitting position. The Doppler examination of flow was located with continuous-wave, interrogating ascending aorta measurements. The subjects completed the study without showing any electrocardiograph abnormalities. An interaction effect with stroke volume (P < 0.05) was characterized by a decrease in the men and an increase of stroke volume in the women. Cardiac output rose significantly (P < 0.05) up to 14.5 (SD 6) l · min−1) for the men and 12.1 (SD 4) l · min−1 for the women compared to the rest values [5.8 (SD 0.4) and 4.7 (SD 0.5) l · min−1, respectively]. Flow velocity integral and acceleration time differed significantly between the two groups at rest (P < 0.05). During exercise these differences showed an interaction effect (P < 0.05). These results would indicate that normal men and women respond to sudden strenuous exercise by reducing their left ventricular systolic function, with a significantly greater decrease in women (P < 0.05). The gender differences in the haemodynamic responses during the present study, may, as suggested by others, be attributable to differences in energy metabolism. In addition, changes in Doppler parameters of aortic flow, haemodynamics and blood pressure responses during sudden strenuous exercise differed markedly from those seen before with endurance exercise. Accepted: 8 January 1997  相似文献   

18.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

19.
A transposable element, Flipper, was isolated from the phytopathogenic fungus Botrytis cinerea. The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. The Flipper sequence is 1842 bp long with perfect inverted terminal repeats (ITRs) of 48 bp and an open reading frame (ORF) of 533 amino acids, potentially encoding for a transposase; the element is flanked by the dinucleotide TA. The encoded protein is very similar to the putative transposases of three elements from other phytopathogenic fungi, Fot1 from Fusarium oxysporum, and Pot2 and MGR586 from Magnaporthe grisea. The number of Flipper elements in strains of B. cinerea varied from 0 to 20 copies per genome. Analysis of the descendants of one cross showed that the segregation ratio of Flipper elements was 2:2 and that the copies were not linked. Received: 4 December 1996 / Accepted: 21 January 1997  相似文献   

20.
In the Swiss Prealps Entomobrya nivalis hibernates in an inactive state, hidden under bark flakes on spruce. For freeze avoidance it relies on thermal hysteresis proteins (THPs) and polyols (mainly ribitol, with small amounts arabitol and threitol). Polyols are present only during the inactive state, THPs additionally protect during the transition phase in spring and autumn, when animals are still active but frosts may occur. Peak values were recorded in February/March for THPs (3.5 °C hysteresis between melting and freezing point) and for polyols (26 μg mg−1 FW; hemolymph osmolality 680 mosmol l−1). E. nivalis is able to control its hemolymph osmolality independently of body water content. Mean osmolality in summer was 350– 440 mosmol l−1, in winter it was elevated to 650 mosmol l−1, due to a synthesis mainly of ribitol. Body water content varied between 1.8 and 3.3 mg H2O mg−1 DW, depending on humidity conditions. Experiments on triggering of antifreeze synthesis showed the action of temperature and photoperiod as cues, but there was also evidence for an endogenous rhythm. No clear correlation between antifreeze concentration and supercooling ability could be established, suggesting that gut content or other parameters also play an inportant role. Accepted: 18 November 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号