首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

2.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

3.
Melatonin induces pigment granule aggregation in amphibian melanophores. In the studies reported here, we have used fluorescence microscopic techniques to test the hypothesis that such melatonin-induced pigment movement is correlated with alterations in either the actin or tubulin cytoskeletal patterns of cultured Xenopus melanophores. In general, the cytoplasmic domains of the cultured melanophores were flat and thin except in the perinuclear region (especially when the pigment was aggregated). The microtubules and microfilaments were usually found in the same focal plane; however, on occasion, microfilaments were closer to the substratum. Microtubules were arranged in arrays radiating from what are presumed to be cytocenters. A small percentage of the melanophores were very large, had actin-rich circular perimeters and did not respond as rapidly to melatonin treatment as did the other melanophores. Melanophores with either aggregated or dispersed melanosomes had low intensity rhodamine-phalloidin staining of actin filaments compared to nonpigmented cells, whereas the FITC anti-tubulin intensities were comparable in magnitude to that seen in nonpigmented cells. When cells were fixed prior to complete melatonin-induced pigment granule aggregation there was no abrupt diminution in either the tubulin or actin staining at the boundary between pigment granule-rich and pigment granule-poor cytoplasmic domains. Nor could the actin and tubulin patterns in cells with partially aggregated melanosomes be reliably distinguished from those in melanophores in which the melanosomes were either completely dispersed or completely aggregated. These data argue against the hypothesis that melatonin causes consistent large-scale rearrangements of tubulin and actin polymers as it induces pigment aggregation in Xenopus melanophores.  相似文献   

4.
The effects of acrylamide (ACR), nocodazole, and latrunculin were studied on intracellular transport and cytoskeletal morphology in cultured Xenopus laevis melanophores, cells that are specialized for regulated and bidirectional melanosome transport. We used three different methods; light microscopy, fluorescence microscopy, and spectrophotometry. ACR affected the morphology of both microtubules and actin filaments in addition to inhibiting retrograde transport of melanosomes but leaving dispersion unaffected. Using the microtubule-inhibitor nocodazole and the actin filament-inhibitor latrunculin we found that microtubules and actin filaments are highly dependent on each other, and removing either component dramatically changed the organization of the other. Both ACR and latrunculin induced bundling of microtubules, while nocodazole promoted formation of filaments resembling stress fibers organized from the cell center to the periphery. Removal of actin filaments inhibited dispersion of melanosomes, further concentrated the central pigment mass in aggregated cells, and induced aggregation even in the absence of melatonin. Nocodazole, on the other hand, prevented aggregation and caused melanosomes to cluster and slowly disperse. Dispersion of nocodazole-treated cells was induced upon addition of alpha-melanocyte-stimulating hormone (MSH), showing that dispersion can proceed in the absence of microtubules, but the distribution pattern was altered. It is well established that ACR has neurotoxic effects, and based on the results in the present study we suggest that ACR has several cellular targets of which the minus-end microtubule motor dynein and the melatonin receptor might be involved. When combining morphological observations with qualitative and quantitative measurements of intracellular transport, melanophores provide a valuable model system for toxicological studies.  相似文献   

5.
Mitotic melanophores of Xenopus laevis larvae at 51-53 stages of development were morphologically studied using light and electron microscopy, with special reference to their microtubule-organizing centers. These melanophores represented a highly branched cell shape in mitosis, each cell process is distributed with melanosomes without exhibiting any responsiveness to hormonal (melatonin) stimulation, and upon completion of mitosis, recovered the ability to translocate these granules in response to such a stimulus. At the metaphase, these cells contained bipolar or multipolar spindles, whose poles were composed of three zones: the centrosome with centrioles; the centrosphere; and an outlying radial arrangement of microtubules and their associated inclusions. In these mitotic melanophores, a number of microtubules are distributed within the radially stretching cell processes, whereas an abundance of microtubules reside in the spindles. Possible origins of the microtubules observed in these cytoplasmic processes are discussed in relation to the loss of the ability of pigment translocation during mitosis.  相似文献   

6.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G-protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three-dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P < 0.05, n=200). The average ellipsoidal volume was 0.14+/-0.01 (aggregated) and 0.17+/-0.01 microm3 (dispersed), a difference of 18%. The average major diameter was 810+/-20 and 880+/-20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non-destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

7.
1. Comparing the daytime and the night-time pigmentary patterns of the skin of the pencil fish, Nannostomus beckfordi, we noticed that specific regions of dark spots that were part of the night-time pattern became pale during the day.2. Microscopic observations revealed that melanosomes in the melanophores in those regions were aggregated during the day but became dispersed at night.3. These melanophores responded to melatonin by dispersal of melanosomes while the cells on other parts of the body responded to melatonin by aggregation of the pigment in the normal way.4. The melanophores that responded to melatonin by pigment dispersion responded normally to other hormones and neurotransmitters, as did those on other parts of the skin.5. The results indicate that, in addition to the known melatonin receptor that mediates the aggregation of melanosomes, there also exists an unusual receptor which mediates the dispersion of pigment in melanophores. We have tentatively designated this receptor the ‘beta-melatonin receptor’.  相似文献   

8.
Fundulus heteroclitus melanophores were successfully cultured and maintained in culture for up to 2 months. Compared to other teleost melanophores in the fin, scale, or split fin preparation, the cultured melanophores show unusual responses to both epinephrine and ion solutions. First, they aggregated their melanosomes in response to concentrations of epinephrine as low as 10(-12) M. Second, the melanophores in a 6-day, or older, culture aggregated their melanosomes in response to both sodium and potassium ion solutions. This is in contrast to 4-day-old cultures (and reports of noncultured melanophores) where melanosomes are aggregated in response to potassium but dispersed in sodium ion solutions.  相似文献   

9.
Black pigment cells called melanophores change colour in response to environmental changes and have lately been studied as promising biosensors. To further elucidate the intracellular processes involved in the colour changes of these cells, and to find optimal biosensing principles, the electric charge of intracellular pigment granules, melanosomes, has been determined in vitro by electrophoresis. Melanosomes from the two extreme states in the cell colour change (aggregated and dispersed melanosomes) were measured. The charge was found to be -1.5 x 10(-16) and -1.7 x 10(-16) C, aggregated and dispersed melanosomes, respectively, without significant difference between the two conditions. This charge is of the same order of magnitude as the one of 1000 electrons. The origin of the melanosome charge, and the use of these findings in new biosensor principles, is discussed.  相似文献   

10.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G‐protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three‐dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P<0.05, n=200). The average ellipsoidal volume was 0.14±0.01 (aggregated) and 0.17±0.01 μm3 (dispersed), a difference of 18%. The average major diameter was 810±20 and 880±20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non‐destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

11.
Movement and positioning of melanophore pigment organelles depend on microtubule- and actin-dependent motors, but the regulation of these forces are poorly understood. Here, we describe a cell free and fixed time motility assay for the study of the regulation of microtubule-dependent pigment organelle positioning in vitro. The assay involves introduction of microtubule-asters assembled in clam oocyte lysates into lysates prepared from Fundulus heteroclitus melanophores with either aggregated or dispersed pigment. When asters were introduced in lysates prepared from melanophores with dispersed pigment, pigment organelles bound astral microtubules and were evenly distributed throughout the aster. In contrast, when asters were introduced into lysates prepared from melanophores with aggregated pigment, pigment organelles accumulated around the centrosome, mimicking a pigment aggregate. The addition of anti-dynein intermediate chain antibody (m74-1), previously shown to interfere with binding of dynactin to dynein and thereby causing detachment of dynein from organelles, blocked the ATP-dependent aggregation of pigment in vitro and induced a depletion of pigment from the centrosomal area. The results show that dynein is essential for pigment aggregation and involved in maintenance of evenly dispersed pigment in vitro, analogous to cellular evidence, and suggest a possible role for dynactin in these processes as well.  相似文献   

12.
The structure of the cytoskeleton in cultured melanophores of the fish Gymnocorymbus ternetzi during aggregation of melanosomes was studied. It has been shown that the motion of pigment granules is accompanied by a reorganization of microtubules and intermediate filament systems. In melanophores with dispersed pigment granules, microtubules are wavy and form a loose network whilst intermediate filaments in such cells form a dense network around the dispersed melanosomes. During aggregation microtubules and intermediate filaments become radially oriented. It was also shown that the surface area of melanophores increased during aggregation.  相似文献   

13.
The present study describes the ability of 315 nM okadaic acid to induce melanosome dispersion in cultured Xenopus laevis melanophores. This effect of okadaic acid is similar to that of a-melanocyte stimulating hormone (MSH) and can be reversed by melatonin treatment; it indicates that a member of the protein-phosphatase 1 or 2A families must be active for maintenance of the aggregated state. Higher concentrations of okadaic acid (1 μM) attenuate the response of Xenopus melanophores to melatonin leading to the hypothesis that melatonin action is mediated by the calcium/calmodulin activated phosphatase 2B. This hypothesis seems unlikely, however, since the calcium/calmodulin inhibitors TFP and W7 do not prevent melatonin-induced pigment aggregation, but instead induce aggregation on their own.  相似文献   

14.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

15.
The present study describes the ability of 315 nM okadaic acid to induce melanosome dispersion in cultured Xenopus laevis melanophores. This effect of okadaic acid is similar to that of a-melanocyte stimulating hormone (MSH) and can be reversed by melatonin treatment; it indicates that a member of the protein-phosphatase 1 or 2A families must be active for maintenance of the aggregated state. Higher concentrations of okadaic acid (1 microM) attenuate the response of Xenopus melanophores to melatonin leading to the hypothesis that melatonin action is mediated by the calcium/calmodulin activated phosphatase 2B. This hypothesis seems unlikely, however, since the calcium/calmodulin inhibitors TFP and W7 do not prevent melatonin-induced pigment aggregation, but instead induce aggregation on their own.  相似文献   

16.
Lower vertebrates use rapid light‐regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha‐melanocyte‐stimulating hormone (α‐MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α‐MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α‐MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α‐MSH.  相似文献   

17.
Summary The ultrastructure of the melanophores of Pterophyllum scalare was studied with respect to changes in cell shape during melanosome migration and the number and distribution of microtubules within the cell extensions. Cells were fixed with pigment fully aggregated or fully dispersed. All measurements were carried out on cross sections of cell processes, i.e. sections cut perpendicular to the long axis of the cell extensions. Cross sections of processes of melanophores with dispersed pigment are more or less ovoid in shape, and microtubules are arranged predominantly just below the cell membrane. These microtubules exhibit a relatively constant centre-to-centre spacing of about 55–65 nm. Processes of melanophores with aggregated pigment seem to be collapsed; their volume is substantially decreased but their circumference equals that of dispersed melanophores. The number of microtubules is reduced, and their regular arrangement is lost. The differences in microtubule number associated with the aggregated or dispersed state occur irrespective of the nature of the agent inducing dispersion or aggregation. In addition, apparent insertion of microtubules into the plasma membrane of the cell processes and associations of microtubules with cytoplasmic densities in the cell centre are described.The results indicate a rapid disassembly and assembly of microtubules associated with pigment movements. The possible role of microtubule associations with cell membrane and densities as sites of microtubule polymerization is briefly discussed.This work was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

18.
Summary Tail-fin melanophores of tadpoles of Xenopus laevis (Daudin) in primary culture were examined scanning electron microscopically in the aggregated and in the dispersed state. After isolation, the melanophores are spherical, but within 24 h they develop thin filopodia for attachment to the substratum. Subsequently, cylinder-like as well as flat sheet-like processes are formed, which adhere to the substratum with terminal pseudopodia and filopodia. The processes of adjacent melanophores contact each other, thus forming an interconnecting network between the melanophores.In the aggregated state the central part of the melanophore is spherical and voluminous. Both the central part and the processes bear microvilli. In melanophores with dispersed melanosomes the central part is much flatter; the distal parts have a thickness that equals a monolayer of melanosomes. The surface of the cell bears only scarce microvilli.These features indicate that melanophores do not have a fixed shape and that pigment migration is accompanied by reciprocal volume transformation between the cell body and its processes.  相似文献   

19.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

20.
In the periodic albino mutant (ap/ap) of Xenopus laevis, peculiar leucophore‐like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild‐type (+/+). These leucophore‐like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of α‐melanocyte stimulating hormone (αMSH), and (4) containing an abundance of bizarre‐shaped, reflecting platelet‐like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore‐like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to αMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore‐like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore‐like cells are essentially similar to melanophores of the wild‐type with respect to their localization in the skin and manner of response to αMSH, (3) the leucophore‐like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet‐like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore‐like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号