首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Adenosylcobalamin-dependent rearrangements are enzyme catalyzed reactions in which a hydrogen atom is transferred from one carbon atom to an adjacent one in exchange for a group X which migrates in the opposite direction. In the hydrogen transfer step, the mechanism of which is reasonably well understood, the cofactor serves as an intermediate hydrogen carrier. The transfer of hydrogen to the cofactor involves homolysis of the carbon-cobalt bond to generate cob(II)alamin and the 5-deoxyadenos-5-yl radical, followed by abstraction of a hydrogen atom from the substrate to form 5-deoxyadenosine and the substrate radical. After migration of group X, the hydrogen atom is returned to the product radical by the reverse of the above reactions to generate the final product and reconstitute the cofactor.In contrast to the transfer of hydrogen, the mechanism of group X migration is poorly understood. Many reactions mechanisms have been proposed on chemical grounds, but there is insufficient biochemical evidence to permit a choice among these proposals. A quantity of negative evidence has accumulated suggesting that group X migration does not involve alkylation of the cobalt of cobalamin by the substrate, but in the absence of firm data supporting an alternative mechanism, even this weak conclusion must be regarded as provisional.An invited article. Supported in part by grant AM-16589 from the National Institutes of Health.  相似文献   

2.
Adenosylcobalamin-dependent glycerol dehydratase undergoes mechanism-based inactivation by its physiological substrate glycerol. We identified two genes (gdrAB) of Klebsiella pneumoniae for a glycerol dehydratase-reactivating factor (Tobimatsu, T., Kajiura, H., Yunoki, M., Azuma, M., and Toraya, T. (1999) J. Bacteriol. 181, 4110-4113). Recombinant GdrA and GdrB proteins formed a tight complex of (GdrA)(2)(GdrB)(2), which is a putative reactivating factor. The purified factor reactivated the glycerol-inactivated and O(2)-inactivated glycerol dehydratases as well as activated the enzyme-cyanocobalamin complex in vitro in the presence of ATP, Mg(2+), and adenosylcobalamin. The factor mediated the exchange of the enzyme-bound, adenine-lacking cobalamins for free, adenine-containing cobalamins in the presence of ATP and Mg(2+) through intermediate formation of apoenzyme. The factor showed extremely low ATP-hydrolyzing activity and formed a tight complex with apoenzyme in the presence of ADP. Incubation of the enzyme-cyanocobalamin complex with the reactivating factor in the presence of ADP brought about release of the enzyme-bound cobalamin. The resulting tight inactive complex of apoenzyme with the factor dissociated upon incubation with ATP, forming functional apoenzyme and a low affinity form of factor. Thus, it was established that the reactivation of the inactivated holoenzymes takes place in two steps: ADP-dependent cobalamin release and ATP-dependent dissociation of the apoenzyme-factor complex. We propose that the glycerol dehydratase-reactivating factor is a molecular chaperone that participates in reactivation of the inactivated enzymes.  相似文献   

3.
Adenolsylcobalamin-dependent enzymes catalyze free radical mediated reactions of their substrates. Stereochemical methods have been used to establish the nature of the primary radical initiation step in ribonucleoside triphosphate reductase. Kinetic isotope effects have been used to establish a kinetic coupling between cobalt-carbon bond cleavage and hydrogen atom abstraction from the substrate. Isotope effects have also been used to identify rate-limiting steps with wild type and mutant forms of the enzymes and in model reactions to assess tunneling contributions to hydrogen atom transfer steps. Computational methods have been employed to explore the pathways for functional group migration in the radical pathways. Analogs of substrates and of adenosylcobalamin have been used to explore the fidelity of the enzyme active sites and the radical pathways.  相似文献   

4.
Ethanolamine ammonia-lyase is an adenosylcobalamin-dependent enzyme that catalyzes the rearrangement of ethanolamine and other vicinal amino alcohols to oxo-compounds and ammonia. Treatment of this enzyme with the sulfhydryl group-blocking reagent methyl methanethiosulfonate produces a species with diminished catalytic activity. When methyl methanethiosulfonate -treated ethanolamine ammonia-lyase was incubated with a carboxyl-blocking reagent consisting of glycine ethyl ester plus a water-soluble carbodiimide, the enzyme lost more than 80% of its residual activity, while at the same time glycine ethyl ester was incorporated into it at a stoichiometry of 6 mol/mol of enzyme. Both the loss of activity and the incorporation of glycine ethyl ester were prevented if ethanolamine was included in the glycine ethyl ester-containing incubation mixture. These results suggest that an active site carboxyl group plays a role in the mechanism of catalysis by ethanolamine ammonia-lyase, and that this carboxyl group is amidated when the enzyme is incubated with glycine ethyl ester plus carbodiimide.  相似文献   

5.
A series of 17 analogs of 5'-deoxy-5'-adenosylcobalamin(adenosylcobalamin) have been synthesized with modifications in the base or ribose moiety of the nucleoside ligand. These analogs have been examined for their effects on reactions catalyzed by the ribonucleotide reductase of Lactobacillus leichmannii. All the analogs are inhibitors of ATP reduction in the presence of adenosylcobalamin as coenzyme, and hence all are bound to the catalytic site. Only the 3-beta-D-ribofuranosyladenine analog (isoadenosylcobalamin) showed substantial activity as a coenzyme in ATP reduction, giving a rate of 59% of that obtained with the adenosylcobalamin. Lesser rates of reduction were obtained with nebularyl-, 2'-deoxyadenosyl-, tubercidyl-, isopropylideneadenosyl-, L-adenosyl-, and ara-adenosylcobalamin, coenzyme activity decreasing in that order. Other analogs showed no significant coenzyme activity. The rate of hydrogen exchange into water from the 5'-methylene group of the nucleoside ligand appeared to parallel the coenzyme activity in those analogs examined, but only the four cobalamins with highest coenzyme activity (adenosyl, isoadenosyl, nebularyl, 2'-deoxyadenosyl) gave detectable amounts of "active coenzyme B12," THe rapidly formed paramagnetic intermediate of ribonucleotide reduction. The enzyme system produced the slowly formed paramagnetic species characterized by a doublet EPR spectrum only with adenosyl- and isoadenosylcobalamin. By contrast the enzymic degradation of analogs to cob(II)alamin and 5'-deoxynucleoside occurred not only with those analogs active as coenzymes and in the exchange reaction but also with a number of coenzymically inactive analogs, and the rate of degradation was unrelated to the rate of ribonucleotide reduction for those analogs with coenzyme activity.  相似文献   

6.
Ethanolamine ammonia-lyase (EC 4.3.1.7) catalyzes the adenosylcobalamin-dependent deamination of ethanolamine and 2-aminopropanol. Incubation of the enzyme.cofactor complex with 2-aminoacetaldehyde leads to rapid cleavage of the carbon--cobalt bond accompanied by the destruction of the corrinoid portion of the cofactor. During this reaction the adenosyl portion of the cofactor is oxidized to 4',5'-anhydroadenosine, and the aminoacetaldehyde is converted to acetic acid, which remains associated with the enzyme as a noncovalent complex which survives gel filtration. There is no evidence for the alkylation of the corrin metal by the substrate analog. The enzyme.AdoCbl complex is thus able to eliminate an amino group from a substrate analog without the formation of a new alkyl cobalamin in which the analog is a ligand. These observations do not support the participation of what might be termed "substratylcobalamin" as an intermediate in the ammonia migration occurring in reactions catalyzed by ethanolamine ammonia-lyase.  相似文献   

7.
The radical intermediates generated during the catalytic cycles of adenosylcobalamin-dependent enzymes occur in pairs. The positions of radicals residing on the cofactor, substrate or protein, relative to the position of the low-spin Co(2+) from the cob(II)alamin intermediate, can be extracted from electron paramagnetic resonance (EPR) spectra of the spin-coupled pairs. Examples of radical-Co(2+) pairs that span a range of interspin distances from 3 to 13A have been presented. Interspin distances greater than 5A require motion of one or more of the participating species. EPR spectroscopy provides a convenient means to determine the structures of these transient intermediates.  相似文献   

8.
9.
Using a semiquantitative PCR-based approach, a breakpoint cluster region of AML1 was associated with the nuclear matrix. Inhibition of topoisomerase II (topoII) by etoposide stimulated the appearance of histone γH2AX foci, indicative of DNA double-strand breaks (DSBs). The majority of these foci were associated with the nuclear matrix. Nuclear matrix-associated multiprotein complexes involved in topoII-induced DNA DSB repair were visualized. Colocalization studies demonstrated that these complexes included the main components of the nonhomologous end joining repair system (Ku80, DNA-PKcs, and DNA ligase IV). Thus, it was suggested that nonhomologous DNA end joining is a possible mechanism of topoII-induced chromosomal rear-rangements.  相似文献   

10.
A series of 16 analogs of 5'-deoxy-5'-adenosylcobalamin (adenosylcobalamin) were examined for their effects on the diol dehydrase system of Klebsiella pneumoniae (Aerobacter Aerogenes). Four analogs, ara-adenosyl-, aristeromycyl-, 3-isoadenosyl-, and nebularylcobalamin, were able to function as coenzymes in the diol dehydrase reaction, coenzyme activity decreasing in that order. Like the native holoenzyme, complexes of the enzyme with these four analogs show a cob(II)alamin-like absorption peak or shoulder in the presence of 1,2-propanediol. Analogs containing hypoxanthine, cytosine, or benzimidazole do not function as coenzymes, but are weak competitive inhibitors in the presence of adenosylcobalamin. Analogs in which the D-ribosyl moiety is replaced by L-ribose or by an alkyl chain of 2 to 6 carbons are inactive as coenzymes, but act as competitive inhibitors with extremely high affinity for the apoenzyme. Complexes with the inactive analogs showed visible spectra similar to those of the corresponding free cobalamins. Upon anaerobic photolysis and subsequent aeration, complexes with the first group of inactive analogs produced unusually stabilized cob(II)alamin, while complexes with the second group of inactive analogs were readily photolyzed to a hydroxocobalamin-enzyme complex. Complexes with adeninylpentyl- and L-adenosylcobalamin were stable to light under the same conditions. These findings suggest that both the ribose and the adenine moiety of the nucleoside participate in enzyme-coenzyme interaction, involving not only the binding to the apoenzyme but also the activation of the carbon-cobalt bond.  相似文献   

11.
We have investigated the reaction of glutamate mutase with the glutamate analogue, 2-thiolglutarate. In the standard assay, 2-thiolglutarate behaves as a competitive inhibitor with a Ki of 0.05 mM. However, rather than simply binding inertly at the active site, 2-thiolglutarate elicits cobalt-carbon bond homolysis and the formation of 5'-deoxyadenosine. The enzyme exhibits a complicated EPR spectrum in the presence of 2-thiolglutarate that is markedly different from any previously observed with the enzyme. The spectrum was simulated well by assuming that it arises from electron-electron spin coupling between a thioglycolyl radical and low-spin Co2+ in cob(II)alamin. Analysis of the zero-field splitting parameters obtained from the simulations places the organic radical approximately 10 A from the cobalt and at a tilt angle of approximately 70 degrees to the normal of the corrin ring. This orientation is in good agreement with that expected from the crystal structure of glutamate mutase complexed with the substrate. 2-Thiolglutarate appears to react in a manner analogous to that of glutamate by first forming a thiolglutaryl radical at C-4 that then undergoes fragmentation to produce acrylate and the sulfur-stabilized thioglycolyl radical. The thioglycolyl radical accumulates on the enzyme, suggesting it is too stable to undergo further steps in the mechanism at a detectable rate.  相似文献   

12.
Ethanolamine ammonia-lyase catalyzes the adenosylcobalamin (AdoCbl)-dependent conversion of ethanolamine to acetaldehyde and ammonia. During this reaction, a hydrogen atom migrates from the carbinol carbon of ethanolamine to the methyl carbon of acetaldehyde. Previous studies have shown that this migrating hydrogen equilibrates with the hydrogens on the 5'-(cobalt-linked) carbon of the cofactor. On the basis of those studies, a two-step mechanism for hydrogen transfer has been postulated in which the migrating hydrogen is first transferred from the substrate to the cofactor, then in a subsequent step is returned from the cofactor to the product. We now show that this migrating hydrogen is transferred not only to the cofactor, but also to a second acceptor at the active site. Hydrogens on this acceptor do not exchange with water during the course of the reaction, but are released to water when the enzyme is denatured. The catalytic significance of this second hydrogen acceptor was demonstrated by the findings that the transfer of hydrogen to this acceptor required both AdoCbl and active enzyme and that hydrogen at the second acceptor site could be washed out by unlabeled ethanolamine. On the basis of these results, we propose an expanded hydrogen transfer mechanism in which AdoCbl and the second acceptor site serve as alternative intermediate hydrogen carriers during the course of ethanolamine deamination.  相似文献   

13.
Glutamate mutase is one of several adenosylcobalamin-dependent enzymes that catalyze unusual rearrangements that proceed through a mechanism involving free radical intermediates. The enzyme exhibits remarkable specificity, and so far no molecules other than L-glutamate and L-threo-3-methylaspartate have been found to be substrates. Here we describe the reaction of glutamate mutase with the substrate analog, 2-ketoglutarate. Binding of 2-ketoglutarate (or its hydrate) to the holoenzyme elicits a change in the UV-visible spectrum consistent with the formation of cob(II)alamin on the enzyme. 2-ketoglutarate undergoes rapid exchange of tritium between the 5'-position of the coenzyme and C-4 of 2-ketoglutarate, consistent with the formation of a 2-ketoglutaryl radical analogous to that formed with glutamate. Under aerobic conditions this leads to the slow inactivation of the enzyme, presumably through reaction of free radical species with oxygen. Despite the formation of a substrate-like radical, no rearrangement of 2-ketoglutarate to 3-methyloxalacetate could be detected. The results indicate that formation of the C-4 radical of 2-ketoglutarate is a facile process but that it does not undergo further reactions, suggesting that this may be a useful substrate analog with which to investigate the mechanism of coenzyme homolysis.  相似文献   

14.
Pyridoxal 5'-phosphate (PLP), in the active site of ornithine 4,5-aminomutase (OAM), forms a Schiff base with N(δ) of the d-ornithine side chain and facilitates interconversion of the amino acid to (2R, 4S) 2,4-diaminopentanoic acid via a radical-based mechanism. The crystal structure of OAM reveals that His225 is within hydrogen bond distance to the PLP phenolic oxygen, and may influence the pK(a) of the Schiff base during radical rearrangement. To evaluate the role of His225 in radical stabilization and catalysis, the residue was substituted with a glutamine and alanine. The H225Q and H225A variants have a 3- and 10-fold reduction in catalytic turnover, respectively, and a decrease in catalytic efficiency (7-fold for both mutants). Diminished catalytic performance is not linked to an increase in radical-based side reactions leading to enzyme inactivation. pH-dependence studies show that k(cat) increases with the ionization of a functional group, but it is not attributed to His225. Binding of 2,4-diaminobutyric acid to native OAM leads to formation of an overstabilized 2,4-diaminobutyryl-PLP derived radical. In the H225A and the H225Q mutants, the radical forms and then decays, as evidenced by accumulation of cob(III)alamin. From these data, we propose that His225 enhances radical stability by acting as a hydrogen bond acceptor to the phenolic oxygen, which favors the deprotonated state of the imino nitrogen and leads to greater resonance stabilization of the 2,4-diaminobutyryl-PLP radical intermediate. The potential role of His225 in lowering the activation energy barrier to mediate PLP-dependent radical rearrangement is discussed.  相似文献   

15.
A comparative study of the reaction of meso-, d-, and dl-2,3-butanediols with adenosylcobalamin-dependent dioldehydratase was carried out. While the meso isomer is both a substrate and inactivator of holoenzyme, the d and dl compounds act as purely competitive inhibitors, neither undergoing catalysis nor inactivating holoenzyme. Furthermore, d- and dl-2,3-butanediols protect holoenzyme from oxygen inactivation and enzyme-bound cofactor from photolysis, and do not induce detectable cleavage of the carbon-cobalt bond of cofactor. These results show that the stereospecificity of the inactivation reaction is the same as that of catalysis, suggest that hydrogen abstraction from C-1 of substrate may be concerted with cleavage of the carbon-cobalt bond of adenosylcobalamin, and further suggest that formation of a carbon-cobalt bond between coenzyme and substrate is not obligatory for catalysis.  相似文献   

16.
A class of enzymatic reactions of S-adenosylmethionine (AdoMet) has recently been recognized, in which AdoMet plays a novel role by initiating free radical formation through the intermediate formation of 5'-deoxyadenosine-5'-yl, the 5'-deoxyadenosyl radical. The reactions are in this way related to adenosylcobalamin-dependent processes, which also depend on the formation of the 5'-deoxyadenosyl radical as an intermediate. The mechanisms by which the 5'-deoxyadenosyl radical is generated by the AdoMet- and adenosylcobalamin-dependent enzymes are very different. However, the functions of the 5'-deoxyadenosyl radical are similar in that in all cases it abstracts hydrogen from a substrate to form 5'-deoxyadenosine and a substrate-derived free radical. In this paper, the role of the 5'-deoxyadenosyl radical in the reaction of the adenosylcobalamin-dependent reactions will be compared with its role in the AdoMet-dependent reaction of lysine 2,3-aminomutase. The mechanism by which AdoMet is cleaved to the 5'-deoxyadenosyl radical at enzymatic sites will also be discussed.  相似文献   

17.
Using semi-quantitative PCR-based approach, we have shown that the breakpoint cluster region of the AML1 gene was associated with the nuclear matrix. We have demonstrated that inhibition of topoisomerase II by etoposide stimulates the appearance of histone gammaH2AX foci, an indicator for the presence of DNA double-strand breaks. Furthermore, the major part of these foci was associated with the nuclear matrix. We also visualized nuclear matrix--associated multiprotein complexes involved in topoisomerase II--induced DNA double-strand break repair. Colocalization studies have demonstrated that these complexes included the principal components of the non-homologous end joining repair system (Ku80, DNA-PKcs and DNA ligase IV). Thus, it is reasonable to suggest that the non-homologous DNA end joining is a possible mechanism of topoisomerase II--induced chromosomal rearrangements.  相似文献   

18.
Studies [bachovchin, W. W., et al. (1978) Biochemistry 17, 2218] of the mechanism of inactivation of adenosylcobalamin-dependent diol dehydratase have led to the development of a general method to describe the kinetics of a reaction pathway containing a reservoir of mobile hydrogen. Analysis by this method of catalytic rate measurements for mixtures of 1,2-propanediol and 1,1-dideuterio-1,2-propanediol supports a mechanism involving an intermediate with three equivalent hydrogens, in which hydrogen transfer from this intermediate to product is the major rate-contributing step. Other results using tritium as a trace label [essenberg, M. K., et al. (1971) J. Am. Chem. Soc. 93, 1242] are considered in light of these deuterium isotope studies.  相似文献   

19.
20.
Yoon JS  Richardson RH 《Genetics》1978,88(2):305-316
Clusters of breaks at certain intercalary heterochromatin sites producing chromosomal rearrangements are reported in four endemic species (24 strains) of Hawaiian Drosophila. In laboratory strains of these species we observed some types of changes in chromosome structure that were predicted in our earlier studies (Yoon and Richardson 1976a).-We outline the pseudochromocenter model for the production of chromosomal rearrangements. First, nonhomologous sites that are heterochromatic and contain similar base sequences of highly repetitious DNA join in a chromocenter-like configuration. Second, chromatid exchanges by breakage and reunion occur at the ectopically joined sites. Based on this model, one expects many new chromosomal rerrangements, some of which have been observed and used to differentiate species.-Inversions with identical breakpoints may occur with much greater frequency than previously assumed. Chromosome phylogenies, based on the assumption that inversions are unique events, still would be accurate if the incorporation of an inversion into the karyotype was rare. This would be the case if a rare combination of genes was necessarily contained in the inversion before it was likely to be incorporated into the gamete pool and thereby become a characteristic feature of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号